ICASA Version 1.0 Data Standards for Agricultural Research and Decision Support

L.A. Hunt¹, G. Hoogenboom², J.W. Jones³, and J.W. White^{4,*}

¹University of Guelph, Guelph, Canada, ²University of Georgia, Griffin, GA, USA, ³University of Florida, Gainesville, FL, USA, ⁴ALARC-USDA, Maricopa, AZ, USA * Corresponding author, email: jwhite@uswcl.ars.ag.gov

International Consortium for Agricultural System Applications, P.O. Box 527, Honolulu, Hawaii 96822

10 August 2006

ver ICASA1.06

Abstract

The use of standard data formats for documenting experiments and modeling crop growth and development can greatly facilitate exchange of information and software, allowing researchers to focus on science rather than on re-formatting data. The standards developed by the International Benchmark Sites Network for Agrotechnology Transfer (IBSNAT) project and used in the original Decision Support System for Agrotechnology Transfer (DSSAT) software package were of considerable value in this context, but they contained ambiguities that made them unsuitable for certain uses. The International Consortium for Agricultural Systems Applications (ICASA) revised the standards in the year 2000. Specific goals were to provide more complete documentation of experiments and to allow use of the standards in a wide range of decision support situations. Further modifications proved necessary, both to permit use with crops not previously considered and to place the standards in a more general framework, necessary as software systems evolve and researchers move towards more generic mechanisms for data interchange. The ICASA standards have thus been reformulated with greater emphasis on standardizing vocabularies and clearly specifying relations among variables. This change moves the standards closer to data ontologies being developed in other branches of plant science. The modified standards, which may be implemented in an ASCII file format, in a relational database, in eXtensible Markup Language (XML) format, or in other formats, are quite similar to those documented previously. They organize data into a two-level hierarchy, using indices or keys to link information both across and within hierarchies. An overview of the ICASA Version 1.0 standards is presented in this document, and the ASCII implementation is described in some detail. Implementations being developed for relational databases and XML are also discussed briefly. The ICASA Version 1.0 Data Standards will be implemented in the next version of DSSAT.

Introduction

Efficient interchange of data among researchers, especially for use in simulation models and other decision support tools, requires use of a common vocabulary and strategy for organizing data. The agricultural research community increasingly encounters research problems that require interdisciplinary collaboration. Physiologists and molecular biologists work together to develop a better understanding of the genetic control of productivity-related traits. Agronomists, soil scientists and irrigation specialists combine efforts in order to increase the efficiency of crop water use. In such collaborations, ready data interchange is essential. Genomic data are widely available through publicly accessible databases (Blanchard, 2004). Daily weather records and soil profile data are increasingly available through the Internet. The International Research Institute for Climate Prediction recently developed two daily weather data download options in ICASA format that can be accessed from the ICASA web site (www.icasa.net/weather_data). Efforts are also underway to make the "World Inventory of Soil Emission Potentials" (WISE) database developed by the International Soil Reference and Information Centre in The Netherlands available for crop model applications. Field research data, however, are seldom available through public databases. Although there have been various initiatives to develop systems for reporting and storing data from field research, e.g., van Evert et al. (1999a; 1999b); Bostick et al. (2004), to date, no system is widely accepted as a standard.

Among the largest sustained effort to promote the use of standards in relation to field research has been that of the International Consortium for Agricultural Systems Analysis (ICASA), and one of its predecessors, the International Benchmark Soils Network for Agrotechnology Transfer (IBSNAT). As early as 1983, the IBSNAT project developed data standards to be used both to document experiments and to provide input for models or other software tools (Uehara and Tsuji, 1998). The standards and their implementation in ASCII files facilitated interactions among experimenters and modellers (Hunt et al., 1994; Jones et al., 1994). They were extensively used by experimenters and modellers using the DSSAT system (Tsuji et al., 1994) and were adopted by the Global Change and Terrestrial Ecosystem project (GCTE) for use in documenting experiments and regional yield investigations (GCTE, 1996). Within GCTE, the standards greatly assisted model comparisons (Goudriaan, 1996; Jamieson et al., 1998; White et al., 2003) that led to model improvements. To promote actual interchange of data, ICASA has also developed the ICASA Data Exchange (IDE; <u>www.icasa.net/data_exchange/</u>) where ICASA members can store and share experimental data.

Experience with the IBSNAT standards and files showed that they contained ambiguities and lacked fields to characterize certain crops and management practices. Members of ICASA and other organizations thus defined a revised set of standards that were intended to be unambiguous, easily processed by a broad range of software tools, and more inclusive of crops and production practices (Hunt et al., 2001). Use of this initial draft of the ICASA standards and associated ASCII files highlighted further issues that needed attention before wider use, as for example in the DSSAT software, could be promoted with confidence. Furthermore, diverse stakeholders requested that the standards be defined not only for the "flat" ASCII file format but also for formats such as relational databases and eXtensible Markup Language (XML). Thus, the ICASA standards have been reformulated, with greater emphasis on standardizing vocabularies and establishing relations among variables. This somewhat parallels efforts to develop data ontologies in other branches of plant and agricultural sciences (The Plant Ontology Consortium, 2002; FAO, 2004).

The goal of the ICASA standards, following the thrust of the earlier IBSNAT standards, is to provide a reliable, portable, and flexible structure both for documenting field experiments (or their equivalents in greenhouses or growth chambers) and for specifying realistic conditions for running dynamic simulation models. For documentation, it is desirable to have sufficient detail on weather, soil, crop cultivars, weeds, diseases, pests, and crop management to permit a full reproduction of the experiment and to conserve any information measured or noted during or at the end of the experiment. Often, the variables defined within the standards are taken as indicating the required degree of detail, the "minimum dataset" (Nix, 1984), for experimental documentation. We emphasize, however, that because of the diversity of experiments, the list of variables documented within the current standards should not be interpreted as a "minimum dataset". Indeed, since the standards can be extended to accommodate new variables, and the implementation files contracted by omitting variables, the standards are better viewed as describing a "flexible dataset" concept that should be moulded to the needs of specific lines of

research or decision support.

This document provides an overview of the most recent revision, which represents the ICASA Version 1.0 standards. It presents various examples as implemented in ASCII file format and briefly discusses progress in implementing the standards in databases and XML. A number of ASCII implementations of the new standards have been developed and will be used in the next official release of the DSSAT software (Jones et al., 2003; Hoogenboom et al., 2004). The standards are expected to evolve over time, mainly through addition of new variables. Updates to the definitions will be posted at the ICASA web site, <u>www.icasa.net/standards</u>/.

Standards

General

The basic organization of the data is defined for experiments that may include multiple sites and years as well as various crop and weed species, managements, and initial conditions at one site in one year. Various subsets of site, species, managements and initial conditions data are referenced in a central subset of data items identified as "Treatments." Additional subsets of descriptive data and results are linked to "Treatments" through level indicators that are defined in the treatment subset. These linked subsets describe the genotypes, the fields, crop management and other features of the experiment (Fig. 1). Data from experiments are recorded in two separate subsets, one dealing with measurements or observations made at one or a few times during the course of the experiment, the other with those made at intervals throughout the experiment. Field data typically include crop developmental stages, yield and yield components, and growth analysis data such as leaf area index (LAI), stem, leaf, aboveground and grain biomass, but they can include measurements of soil water content, soil nutrient levels, pest damage or any other variables deemed relevant. Weather and general descriptions of soil profiles are managed separately since a single set of data may apply to multiple experiments.

Data items

The basic unit is a data item that contains one or more values, which may be numeric, identifiers, codes, or descriptive text, plus a name. The names are character strings with no distinction between upper and lower case. Information in a data item can be either:

- Variables information pertinent to the experiment/situation documented.
 - Examples:

2070	Value in kg ha ⁻¹ for stem dry weight on a given date.
1982	The year an experiment was planted.
3.2	The number of seed per pod from a soybean treatment.
-5.1	The minimum temperature in °C on a given day.
BAT 477	The name of a common bean cultivar.
UFGA8701	The name of a weather data set.
Early planting	The name of a specific planting date treatment.

• Level indicators - character strings or numbers that link with data reported elsewhere.

Examples:

7	Treatment number 7 in an experiment.
б	Irrigation regime number 6 in an experiment.
IB0488	A cultivar identifier that links to a table of cultivars.
KSAS0401WH	An experiment identifier.

Variables can be numbers (decimal or integer), character strings, or text. Variables associated with a single name must be of the same data type. Units for numeric variables largely follow the International System of Units (SI), but "cm" and "ha" (hectare) are permitted in order to conform to dominant practices in agricultural research, e.g., by the American Society of Agronomy (Anon., 1998). Times of events such as planting, fertilization, or anthesis are recorded using year (four- or two-digit, depending on context) and day of year. Further examples of variables are presented in Table 1, and the full set of standard variables is listed at the ICASA website.

Codes are provided for non-numeric variables where some degree of standardization is convenient or required, such as for describing fertilizer types, irrigation methods, or planting methods. Examples are presented in Table 2, and the complete list of codes is provided at the ICASA website.

Data Sets and Subsets

Data items are organized into a hierarchy with two levels, i.e., sets, and subsets. Sets are the highest level of aggregation. They allow connected but not necessarily related data to be kept together. Three types are currently recognized (Table 3):

- Experiments. A description of treatments, initial conditions and field measurements for a single experiment, which could be multi-location or multi-season.
- Weather. Daily weather data from one or more recording stations.
- Soils. Collections of soil information, usually from a single geographic region or data source.

Data subsets are comprised of closely related data items stemming from one set of measurements or field operations, one soil profile characterization, or one weather station. For experiments, most subsets correspond to specific management activities, e.g. planting or irrigation, or to field measurements (Table 3).

Names and Identifiers - General

Experience from managing data from large numbers of experiments has demonstrated the need for datasets and subsets to be identified in a consistent manner. Furthermore, a compact name is valuable for manipulating data electronically, i.e., in spreadsheets or statistical packages. Thus, a consistent and compact naming system has been defined.

Nonetheless, it is recognized that some flexibility is necessary in naming datasets and subsets, to accommodate both user preferences and established local practice. When a user introduces an identifier that deviates from the standard convention, however, it is important that an effort is made to ensure that such introductions are consistent, especially in linking weather or soil data to experiment descriptions.

Names and Identifiers - Datasets

Datasets are identified by one of three names, EXPERIMENT, SOIL or WEATHER (Table 3), associated with a specific identifier constructed to provide information on the contents of the set. These are constructed differently for experiments, soils, and weather. For experiments, the set of identifiers are constructed by combining:

An institute or region code (two characters, e.g., "UF" for "University of Florida", "CA" for "Canada"),

A code for the site or set of sites (two characters, e.g., "GA" for "Gainesville"),

A year code (two characters representing the year in which the experiment was initiated, the year in which it was finally harvested, or another year of significance to the principal investigator or coordinating Institute),

An experiment number or code (two characters), and

A crop, multi-crop (for mixed cropping or crops with weed populations) or sequence (for rotation experiments) code (two characters).

Thus, the third experiment (03) conducted by the University of Florida (UF) at Gainesville (GA) in 2006 (06) with soybeans would yield a specific dataset identifier of UFGA0603SB.

For weather, dataset identifiers can be constructed from Institute and Site codes plus, if desired, four digits to indicate the starting year (e.g., UFGA2006). Optionally, a twelve-character code may be used, where the first two additional characters indicate the number of years of data and the last two characters can be used to identify other characteristics of the set. Thus, "UFGA196825R1" might indicate a 25-year series from Gainesville, Florida that started in 1968 and that used a method "R1" for estimating daily solar radiation.

For soil data, specific set identifiers can be constructed using a two- character code for the institute or region, plus a two-character code for the site or collection of sites. Alternatively, a longer name (but staying within an eight character limit) can be used to provide significant information on the contents of the set. Thus, "ARIZONA" could be used as a general name for a dataset containing soil profile descriptions from diverse sites in Arizona

Names and Identifiers - Subsets

For experiments, in which each set is restricted to data from one experiment, general names (Table 3) provide an unambiguous identification for each subset, e.g., TREATMENTS, PLANTING, but for weather and soil files, which may contain information from different weather stations or soil profiles, the single name may not guarantee unique identification. Thus, a specific subset identifier may need to be appended to the general name to provide a unique reference for the data items. For example, for weather subsets that contain only a part of an overall dataset, e.g., a single year or portion of a year, the subset should be identified with the general name plus some specific information, as shown below:

WEATHER_STATION:UFGA2004S1

In which the ending "S1" might indicate "Season 1".

For soil subsets, the specific identifiers are of ten-character length, with the Institute and Site codes in the leading four positions, the year the profile was described in the field in the next four positions, and a specific profile identifier in the remaining two positions, e.g., UFGA198501. A soil subset identifier thus may have the appearance shown below:

SOIL_PROFILE:UFGA200401

Names and Identifiers - Variables

Many variable names in DSSAT were limited to four or five characters to permit displaying a name as a label over a column of data that contained no more than five digits. Recognizing, however, that the expansion of the standards to other electronic formats reduces the need to limit the size of variable names, the ICASA standards now include two name formats, the long variable name and the abbreviated name (Table 1). The long name is generally 12 to 24 characters long and uses complete words as much as possible. Words are separated by the underscore ("_") character. The abbreviated name usually corresponds to the previous DSSAT

name, although some variables have been re-named to correct inconsistencies. Abbreviated names for most data are no longer than five characters to permit their use as compact column headings. Allowing five spaces for numeric data permits displaying at least four significant figures, a level of precision greater than achieved in most agronomic, weather and soil measurements.

To facilitate interpretation of the abbreviated names, a major effort has been made to use a consistent naming strategy. Thus, for observed data relating to plant tissue masses or nutrient content, the first character indicates the tissue type, e.g., "L" for leaf, the second character describes the quantity being measured, e.g., "W" for dry weight, "N" for nitrogen, the third and sometimes the fourth character(s), the measurement reference, e.g., "A" for area, "PC" for percentage, and the final character indicates the time or frequency of measurement or observation, e.g., "D" for time series data referred to specific sampling or observation dates, "H" for data recorded at harvest.

ASCII Implementation

<u>General</u>

When the standards are implemented in ASCII, a single file generally corresponds to a dataset, occasionally to a subset. Data items are column-formatted and arranged in columns headed by the abbreviated variable name. These abbreviated names are presented above the variables or level indicators on a header line that begins with a '@' symbol. Multiple names can occur on one line. Text is usually specified by a string of dots after the header to indicate the full width of the field, e.g., "TRT_NAME....." under Treatments in Fig. 1, and the text value must be presented below the header plus dots. For data items at the end of a row, however, text can be used without the dots that are necessary elsewhere. Blank lines can be inserted anywhere in the file.

Examples of ASCII file implementations of the standards are given in Figs. 2 to 6. Fig. 2 contains the documentation for a single experiment, and Figs. 3 and 4, the associated field measurements, separated as summary (Fig. 3) and time series (Fig. 4) data. Fig. 5 is for weather data, and Fig. 6, for soil profile descriptions.

File organization and naming

As outlined above, the usual file organization is for data from a given set or subset to reside within a single file. The file is named using a two-part convention. File prefixes equate to the specific identifiers for the set or subset, whilst the file extension distinguishes among the type of information. The prefix plus, if necessary, part of the extension provides a specific identifier. File extensions are constructed as follows:

- CCX Experimental details, where "cc" indicates a crop, multi-crop, or rotational sequence code. Examples are "WH" for wheat, "PN" for peanut, "MC" for multi-crop, and "SQ" for a rotational sequence or experiment,
- SOL Soil profiles,

WTH Weather.

For convenience, it is often desirable to place the summary and time-course subsets from an experiment in separate files. To allow this, two additional file types are used. Their respective extensions are:

CCA Experiment – summary results, CCT Experiment – time-course results.

Further, large weather datasets may need to be subdivided for easy file handling. In such a case, the subset names indicate the time period covered, and these are used as the file names. Thus, a dataset with the name UFGA197520, having 20 years of daily data starting in 1975, could be broken into two ten-year subsets, with the files containing the subsets identified as UFGA197510.WTH and UFGA198510.WTH.

Some example file names are given below:

UCEA0501.SBX UCEA0501.SQX UCEA0501.MCX UFGA.WTH UFGA2005.WTH UFGALCOR.WTH UC.SOL ARIZONA.SOL

File symbols

Within individual files, specific symbols are used to guide machine reading of data and to facilitate visual inspection of data. Datasets are identified with a dollar sign (\$) in the first column of the first line. This symbol is followed by the general name and the specific identifier, as shown below:

\$EXPERIMENT:UCEA9601SB
\$WEATHER:UFGA2001
\$SOIL:UC
\$SOIL:ARIZONA

Data subsets are identified by placing an asterisk (*) in the first character position before the identifier, as shown below:

*TREATMENTS *IRRIGATIONS *WEATHER_STATION:UFGA2004S1 *SOIL_PROFILE:UFGA200401

Linking data across datasets and subsets

Numeric level identifiers and character strings are used to link information across datasets and subsets much as keys are used to link tables in a relational database. Links between different subsets of data require multiple identifiers in order to accommodate combinations of treatments, replicates, rotations and crop or weed associations as specified in the TREATMENTS subset (Table 4; Fig. 2). Treatment levels and the links are identified with integers, preferably numbered from 1 within each experiment. A value of 0 for the replicate implies that means across replicates are given.

The TREATMENTS subset of Fig. 2 illustrates cases of single replicates and means and of different plant species components (wheat and weeds). Note that while data for individual replicates are given for the wheat, the weed component is only specified at the level of means of the two replicates.

Special syntax and forming rules

The ASCII implementation could be used without restrictions on line length or number of characters allowed in identifiers, variable name abbreviations, or character variables. However, to simplify the development of associated software, and to facilitate viewing and manual checking of the files, the following maximum line and name lengths are used:

1. Lines		254 characters
2. Variabl	e name abbreviation	31 characters
3. Variabl	es	31 characters (but 80 for text)
4. Level in	ndicators	31 characters
5. Dataset	and Subset Identifiers	31 characters

Specific rules for comments, missing data, non-applicable data, data flags, sub-samples, and endof-file markers are summarized in Table 5. Missing numeric data are identified by –99, and missing character strings or text, by the string "-99". In some cases, specific codes can be used to indicate that an application method or fertilizer type is unknown.

Dates for growth stages are presented using two digits for the year and three digits for the day ("yr-day of year" format such as "81253" for day 253 of 1981). This allows a compact presentation, and ambiguities that could arise with the two-digit year format are easily resolved by reference to the planting date as given in the PLANTING subset.

File Additions and Modifications

To incorporate new data items, additional abbreviations are defined, and the corresponding columns of data items added within an existing or new subset. Adding additional data items at the end of existing rows of data items is discouraged. Two exceptions are when the variable is needed as a link to data elsewhere in the file, e.g., additional factors in the treatment subset, or when adding extra rows of data items would disrupt the overall configuration of the file, e.g., for a new daily weather variable.

File Validation

A valid file has no headers repeated within a subset, and it uses unique subset names within the dataset. For experiments, all levels defined in the TREATMENTS subset must link to levels in other subsets. In addition, for a crop grown in the field, a file should contain subsets dealing with GENOTYPES, FIELDS, PLANTING, and INITIAL_CONDITIONS, as a minimum. For a fallow, subsets dealing with FIELDS, INITIAL_CONDITIONS and HARVESTS are required. In the current implementation, the HARVESTS subset is used to specify the end of the fallow.

Relational Database and XML Implementations

A major change in revising the ICASA standards was the conclusion that they must work with diverse formats for electronically storing and manipulating the data. The foremost requirement is that the dictionary of variable names, identifiers and codes, which includes definitions and units of measurement, is comprehensive enough to embrace experiments conducted with many different objectives and is completely enough defined to allow use in different implementations. Thus, in revising the standards, a major effort was made to develop a consistent master list of variables that includes not only variable names, definitions, and units of measurement but information on the data type and validation criteria. The second requirement is to define the relations among variables so that treatment structures, sampling regimes (e.g., dates or positions within a soil profile) are correctly represented.

Implementing the standards for flat ASCII files required the definition of a structure that both facilitated visual inspection of data and ensured that software could read files in a consistent manner. Implementation in a relational database schema requires the definition of tables and fields within tables, and the establishment of links between tables. For this purpose, the sets and subsets correspond to major tables, and individual data items are represented by fields within tables. In the case of subsets containing data with a two-dimensional structure, such as time series of irrigation applications or soil profile descriptions that vary with depth, two tables may be required per subset. The first provides general descriptors or metadata, e.g., name and general characteristics of an irrigation treatment, and the second describes the activities for each treatment on individual dates, e.g., irrigation methods and amounts, or the soil measurements at different depths. Lookup tables are also required for the various codes. Relations among the tables are defined through database keys. Since relationships serve the same function as the various level indicators used in the ASCII implementation, links among keys mainly correspond to the links among level indicators.

Work is underway to adapt the XBuild software tool of DSSAT4 (Uryasev et al., 2004) to the ICASA standard. XBuild currently creates a temporary relational database for a single experiment using the DSSAT4 formats. The new tool, AgroBuild, extends this approach to the ICASA standards and allows managing multiple experiments. The initial emphasis is on managing data for experiment descriptions (FileX) and measured/observed data (FileA and FileT), but the proposed relational structure includes daily weather and soil profile data. Figure 1 presents a simplified representation of the tables and relations.

XML is widely used as a data interchange format (XML Core Working Group, 2004). A key feature is that by conforming to basic syntax rules and providing information to document the structure of a given data file, any XML-compatible software can read the data, perform basic validation checks, and correctly interpret the data for subsequent processing (XML Core Working Group, 2004). Typically, discipline groups develop an XML standard for the subject matter of interest. This work basically consists of defining the file structure through a document type definition (DTD) or an XML schema (XML Core Working Group, 2004). Thus, implementing the ICASA standards in XML requires re-expressing the standards through a DTD or XML schema. Efforts are underway to determine what XML standards have been proposed by other groups involved in agricultural research or industry, and to develop and test an XML prototype based on the ICASA master list of variables.

Standards Documentation and Revision

Complete definitions of variable names, variable codes, dataset and subset names, and relations are maintained as a set of tables accessible at the ICASA web site (www.icasa.net/standards). The standards allow for new datasets, subsets, and variables to be defined according to the needs of specific users, but the utility of the standards depends upon use of a uniform vocabulary. Users are encouraged to report new variable names and codes, as well as dataset and subset names, together with concerns over inconsistencies in the overall standards.

A recent example of the revision process is from a project by the University of Florida to develop a data management system for the Florida Department of Agriculture and Consumer Services (FDAC). In reviewing data to be reported by researchers, it was found that mulching is an important management practice, e.g., plastic mulches are widely used for vegetable production. Thus, a new subset was defined as MULCH_MANAGEMENT and linked to a new treatment category. Since mulches vary in type, thickness, portion of ground cover provided, and other characteristics, new variables were defined for use within the mulching subset. New codes were also defined for mulch types and application methods. We anticipate, however, that these variable list and codes will be modified as actual field data are processed.

Suggestions for additions or modifications will be reviewed periodically and updates to the standards provided as necessary. Backward compatibility will be maintained by retaining synonyms and presenting these in the master list of standard variable names, which is downloadable from the ICASA site. Comments or suggestions on the ICASA standards may be submitted through the ICASA Forum (<u>www.ICASAForum.net</u>) or to the corresponding author of this document (J.W.White: j.white@uswcl.ars.ag.gov).

References

- Anonymous. 1998. Publications handbook and style manual. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Madison, WI.
- Blanchard, J.L. 2004. Bioinformatics and Systems Biology, rapidly evolving tools for interpreting plant response to global change. Field Crops Res. 90:117-131.
- Bostick, W.M., J. Koo, V.K. Walen, J.W. Jones, and G. Hoogenboom. 2004. A web-based data exchange system for crop model applications. Agron. J. 96:853-856.
- FAO. 2004. Agricultural Ontology Service Project (AOS) [Online]. Available at http://www.fao.org/aims/aos.jsp (verified 18 July 2006).
- GCTE. 2006. Global Change and Terrestrial Ecosystems Report No. 2, Second Edition. GCTEFocus 3 Wheat Network: 1996 Model and Experimental Metadata. GCTE Focus 3 Office,Wallingford, UK, 1996.
- Goudriaan, J. 1996. Predicting crop yields under global change. p. 260-274. *In* B.H. Walker and B.H. Steffen (ed.). Global change and terrestrial ecosystems. International Geosphere-Biosphere Programme Book Series #2, Cambridge University Press, Cambridge, UK.
- Hoogenboom, G., J.W. Jones, P.W. Wilkens, C.H. Porter, W.D. Batchelor, L.A. Hunt, K.J. Boote, U. Singh, O. Uryasev, W.T. Bowen, A. Gijsman, A. du Toit, J.W. White, and G.Y. Tsuji. 2004. Decision Support System for Agrotechnology Transfer Version 4.0. Ver. 4.0 [CD-ROM publication]. University of Hawaii, Honolulu, HI.
- Hunt, L.A., J.W. Jones, G. Hoogenboom, D.C. Godwin, U. Singh, N.B. Pickering, P.K. Thornton, K.J. Boote, and J.T. Ritchie. 1994. Input and output file structures for crop simulation models. p. 35-72. *In* P.F. Uhlir and G.C. Carter (ed.) Crop modelling and related environmental data. A focus on applications for arid and semiarid regions in developing countries. CODATA, International Council of Scientific Unions, Paris.
- Hunt, L.A., J.W. White, and G. Hoogenboom. 2001. Agronomic data: advances in documentation and protocols for exchange and use. Agric. Syst. 70: 477-492.
- Jamieson, P.D., J.R. Porter, J. Goudriaan, J.T. Ritchie, H. van Keulen and W. Stol. 1998. A comparison of the models AFRCWHEAT2, CERES-Wheat, Sirius, SUCROS2 and SWHEAT with measurements from wheat grown under drought. Field Crops Res. 55:23-44.
- Jones, J.W., L.A. Hunt, G. Hoogenboom, D.C. Godwin, U. Singh, G.Y. Tsuji, N.B. Pickering,

P.K. Thornton, W.T. Bowen, K.J. Boote and J.T. Ritchie. 1994. Input and output files. p. 1-94. *In* G.Y. Tsuji, G. Uehara, and S. Balas (ed.). DSSAT v3.Vol 2-1. University of Hawaii, Honolulu, HI.

- Jones, J.W., G. Hoogenboom, C.H. Porter, K.J. Boote, W.D. Batchelor, L.A. Hunt, P.W. Wilkens, U. Singh, A.J. Gijsman and J.T. Ritchie. 2003. The DSSAT cropping system model. Eur. J. Agron. 18:235-265.
- Nix, H.A. 1984. Minimum data sets for agrotechnology transfer. Proceedings of the International Symposium on Minimum Data Sets for Agrotechnology Transfer, 21-26 March 1983, ICRISAT Center, India. ICRISAT, Patancheru, India.
- The Plant Ontology Consortium. 2002. Conference report: The Plant Ontology Consortium and plant ontologies. Comp. Funct. Genomics 3:137-142.
- Tsuji, G.Y., G. Uehara and S. Balas. 1994. DSSAT version 3 Volumes 1, 2, and 3. International Benchmark Sites Network for Agrotechnology Transfer, University of Hawaii, Honolulu, HI.
- Uehara, G., and G.Y. Tsuji. 1998. Overview of IBSNAT. p. 1-7. *In* G.Y. Tsuji, G.Hoogenboom and P.K. Thornton (ed.). Understanding Options for AgriculturalProduction, Kluwer Academic Publishers, Dordrecht, The Netherlands.
- Uryasev, O., J.W. Jones, G. Hoogenboom, and C. Porter. 2004. XBuild: Creating crop management files for documenting experiments and simulating crop growths and yield for DSSAT v4. *In* Decision Support System for Agrotechnology Transfer Version 4.0. Vol. 2. DSSAT v4: Data Management and Analysis Tools, Vol. 2, University of Hawaii. Honolulu, HI.
- van Evert, F.K., E.J.A. Spaans, S.D. Krieger, J.V. Carlis, J.M. Baker. 1999a. A database for agroecological research data. 1: Data model. Agron. J. 91:54–62.
- van Evert, F.K., E.J.A. Spaans, S.D. Krieger, J.V. Carlis, J.M. Baker. 1999b. A database for agroecological research data. II. A relational implementation. Agron. J. 91:62–71.
- White, J.W., S.S. Dhillon, L.A. Hunt and P.D. Jamieson. 2003. A Comparison of Approaches to Modeling Phenology as Applied to Genotype by sowing Date Interactions in Wheat.
 p. 35-41. *In* J.W. White (ed.). 2003. Modeling temperature response in wheat and maize: proceedings of a workshop, CIMMYT, El Batán, Mexico, 23-25 April 2001. NRG-GIS Series 03-01. CIMMYT, México, D.F.

XML Core Working Group, 2004. Extensible Markup Language (XML) [Online]. Available at http://www.w3.org/XML/ (verified 18 July 2006).

Table 1. Examples of variables used to describe inputs, crops, management practices, environment, and other aspects of an experiment as specified in the master list of variables for the ICASA standards. Date types (i.e., "doy" and "yeardoy") apply only to ASCII implementation.

Long Name	Abbreviated Name	Description	Unit or Type
cultivar_name	CUL_NAME	Cultivar name	text
field_elevation	FLELE	Elevation of field site	m
field_name	FLNAME	Field name	text
fertilizer_level	FE	Fertilizer level in treatment structure	number
fertilizer_level_name	FE_NAME	Fertilizer level name	text
fertilizer_applic_depth	FEDEP	Fertilizer application/mixing depth	cm
fertilizer_applic_code	FEACD	Fertilizer application, code for method	code
fertilizer_applic_day	FEDAY	Fertilizer application date, doy or dap	day
fertilizer_applic_year	FEYR	Fertilizer application year	year
irrigation level	ID	Irrigation level in treatment structure	number
hund height		Bund height (e.g. for flooded rice)	mm
irrigation applic dopth		Irrigation application donth	am
irrigation_dou		Irrigation application data day or dan	day
imigation_day		Inigation application date, doy of dap	uay
imigation_operation		Inigation operation	code
irrigation_year	IKIK	infigation of water management year	year
planting doy	PLDOY	Planting day of year	doy^1
plant pop at planting	PLPOP	Plant population at planting	number/m ²
planting material age	PLAGE	Planting material age (also dormancy)	day
planting_material	PLMA	Planting material	code
4 . 1 . 6 . 1			
anthesis_days_after_pl	ADAP	lime to anthesis as days after planting	dap
anthesis_date	ADAT	Anthesis date	yrdoy-
anthesis_day_of_year	ADOY	Anthesis day of year	doy
zadoks_21_growth_stage	Z2ID	Zadoks 21 growth stage date	yrdoy
grain_N_area_maturity	GNAM	Grain N at maturity	kg/ha
harvest_index_maturity	HIAM	Harvest index (tops only) at maturity	kg/kg
grain_dry_wt_area_maturity	GWAM	Grain dry weight at maturity	kg/ha
leaf_area_index_maximum	LAIX	Leaf area index, maximum	m^2/m^2
leaf number per stem	LNOSD	Leaf number per stem on a day	number
leaf area index	LAID	Leaf area index on a day	m^2/m^2
tops dry wt area	CWAD	Tops dry weight on a day	kg/ha
grain number area	GNOAD	Grain number on a day	number/m ²
grain dry wt area	GWAD	Grain dry weight on a day	ko/ha
grain dry wt per grain	GWGD	Grain unit dry weight on a day	mg
harvest index	HIAD	Harvest index on a day	ko/ko
nanicle dry wt area	PNWAD	Panicle dry weight (grain±structural) on a day	ng/ng kg/ha
pod dry wt area	PWAD	Pod dry weight on a day	kg/ha
stem dry wt area	SWAD	Stem dry weight on a day	kg/na
stem_ury_wt_atea	SHAD	Stem of y weight on a day	ng/11a

 1 doy = day of year (e.g., 196). 2 yrdoy = two digits of year + day of year (e.g. 81245). Used only in ASCII implementations.

tiller_number_area	TNOAD	Tiller number (area basis) on a day	number/m ²		
tuber_dry_wt_area	UWAD	Tuber dry weight on a day	kg/ha		
grain_N_area	GNAD	Grain N on area basis on a day	kg/ha		
grain_N_percent	GNPCD	Grain N concentration as percentage on a day	%		
plant_P_area	PLPAD	P content on a given day	kg/ha		
soil_NO3_content_layer	NO3WD	Soil layer NO3 N content (dry basis) on a day	ug/g		
soil_NO3_concentration	NO3CD	Soil solution NO3 N conc at a depth on a day	ug/ml		
soil_CO2_emission	SCO2D	Soil CO2 (as C) emission, daily	$g/m^2 d$		
temperature_ maximum	TMAX	Temperature of air, daily maximum	°C		
temperature_ minimum	TMIN	Temperature of air, daily minimum	°C		
rain_snow_fall	RAIN	Daily total precipitation, including snow	mm		
wind_speed_daily	WIND	Wind speed (run), daily	km		
ambient_CO2_conc	ACO2	Ambient CO ₂ concentration, daily average	vpm		
soil_runoff_curve_NRCS	SLRO	Runoff curve, Nat. Resources Conservation Service	number		
soil_organic_C_percent	SLOC	Organic carbon as 100 x g/g dry soil	%		
soil_pH_in_water	SLPHW	pH of soil in water, from layer in profile	number		
soil_root_growth_factor	SRGF	Root growth factor, soil only (0 to 1)	number		
soil_bulk_dens_moist	SLBDM	Soil bulk density when moist	g/cm3		
soil_water_lower_limit	SLLL	Soil water, lower limit for extraction	cm^{3}/cm^{3}		

Category	Code	Description
Chemicals	CH001	Alachlor (Lasso), Metolachlor (Dual) [Herbicide]
	CH022	Malathion, Mercaptothion [Insecticide]
	CH051	Captan [Fungicide]
Crop	AL	Alfalfa/Lucerne
-	MZ	Maize
	SC	Sugarcane
Pest organism	CEW	Corn earworm (Heliothis zea)
-	VBC	Velvetbean caterpillar (Anticarsia gemmatalis)
	SBL	Soybean looper (Pseudoplusia includens)
Application methods	AP001	Broadcast, not incorporated
	AP004	Banded beneath surface
	AP006	Foliar spray
Drainage	DR000	No drainage
-	DR001	Ditches
	DR002	Sub-surface tiles
Fertilizers	FE001	Ammonium nitrate
	FE005	Urea
	FE006	Diammonium phosphate
	FE021	Rock phosphate
	FE022	Calcitic limestone
Irrigation methods	IR001	Furrow, mm
-	IR003	Flood, mm
	IR005	Drip or trickle, mm
Organic materials	OM001	Crop residue
	OM002	Green manure
	OM005	Compost
Planting material	S	Dry seed
	Т	Transplants
	R	Ratoon
Plant distribution	R	Rows
	Н	Hills
	U	Uniform/Broadcast
	RB	Rows on beds
Soil P analysis methods	SA001	Olsen
-	SA003	Bray No. 2
	SA004	Mehlich I (double acid, 1:5)
Tillage implements	TI002	Tandem disk
	TI005	Moldboard plow
	TI006	Chisel plow

Table 2. Examples of codes (variable codes) used to represent specific inputs, crops,

Table 3. General names and descriptions of datasets and subsets.

General Name	Description
Data Sets	
EXPERIMENT	Complete description of management and initial conditions for
	a real or synthetic experiment (or very closely linked set of
	experiments). Data measured during or at the end of the
	experiment. The information presented should be sufficient to
	allow both for an intellectual interpretation of the results and
	for simulation of the experiment with a computer model.
SOIL	Soil profile data for pedons from one or more sites in a region.
WEATHER	Daily weather data from one or more stations.
Data Subsets	
CHEMICALS	Herbicide, pesticide, or growth regulator application details.
ENV_MODIFICATIONS	Adjustments to weather variable such as those that could be
	made during growth cabinet, CO ₂ enrichment, or rainout shelter
	studies.
FERTILIZERS(INORGANIC)	Fertilizer amounts, types, and dates of applications.
FIELDS	Field description including links to weather station and soil
	profile information.
GENERAL	Names and addresses of people involved, location(s) and
	general background details.
GENOTYPES	Crop and cultivar identifiers, names, and background.
HARVESTS	Harvest dates, components harvested, and percentages
	removed.
INITIAL_CONDITIONS	Starting conditions including above- and below-ground
	residues, and water and nitrogen in the complete profile.
IRRIGATION	Irrigation dates and amounts, flood and water table depths,
	thresholds for automatic applications.

ORGANIC_MATERIALS	Details of straw, manure and other organic material
	applications.
PLANTING	Planting date, seed and initial plant populations, seeding depth,
	and plant distribution (row spacing, etc.).
SOIL_ANALYSES	Details of classical soil surface layer analyses.
SOIL_PROFILE	Surface and layer characteristics for a specific soil.
SUMMARY	Summary data (may include data from means over replicates or
	from individual plots) that are collected during the course of or
	at the end of an experiment.
TIME_COURSE	Time-course data (may include data from means over replicates
	or from individual plots) collected during the course of an
	experiment.
TREATMENTS	Treatment names and level codes for rotation and crop
	components and experimental factors.
TILLAGE	Dates and types of tillage operations.
WEATHER_STATION	Daily weather data typically for a single experiment or season,
	but preferably for a complete year or longer.

A. Indicators required to link subsets in different datasets									
<u>Set 1</u>	<u>Set 2</u>	Links Required							
Experiments	Weather	Weather set and subset identifiers							
Experiments	Soil	Soil set and subset (soil profile) identifiers							
B. Indicators requir	ed to link subsets in the	same (Experiment) dataset							
Main Subset	Subsidiary Subset	Links Required							
Treatments	Genotypes	Genotype level no.							
Treatments	Fields	Field level no.							
Treatments	Soil analysis	Soil analysis level no.							
Treatments	Initial conditions	Initial conditions level no.							
Treatments	Plantings	Planting level no.							
Treatments	Irrigations	Irrigation level no.							
Treatments	Fertilizers	Fertilizers level no.							
Treatments	Organic materials	Organic material level no.							
Treatments	Chemicals	Chemicals level no.							
Treatments	Tillage	Tillage level no.							
Treatments	Env_Modifications	Env_Modifications level no.							
Treatments	Harvests	Harvests level no.							
Treatments	Summary	Treatment no., Replicate no., Sequence no., Option no.,							
		Component no.							
Treatments	Time-course	Treatment no., Replicate no., Sequence no., Option no.,							
		Component no.							

Table 4. Indicators required to link data in different datasets and subsets.

Table 5. S	pecial syntax	and formatting	rules for the	ICASA	standards.

Item	Rule							
Comments	Information on data quality, problems with treatments, or aspects of an experiment							
	that are difficult to quantify should normally be recorded under 'Notes' in the							
	'General' subset of the file or using the note fields in the corresponding subset.							
	However, comments can also be inserted immediately after a dataset or subset							
	lentifier, or after a line of data using '!' as the first character in the line. (Used							
	only in the ASCII implementation.)							
Missing data	Indicated by a value of '-99'.							
Non-applicable data	Indicated by a value of '-99'. For example, row width and spacing for a crop that							
	is broadcast sown.							
Data 'flags'	For specific data values that require annotation (e.g., due to quality concerns or to							
	indicate an estimated value), data flags may be defined for summary, time series							
	and weather data. The allowed values of the flag and their respective definition ar							
	defined in the General section of the dataset, and the actual flag values are							
	reported in the respective file under the variable FLAGA, FLAGT or FLAGW.							
	(See examples in Figs 3, 5 and 6).							
Sub-samples	Data obtained from sub-samples can be entered under the optional header 'SS' in							
	any subset for any of the datasets. These subset data items can be related to							
	individual replicates or to overall averages (level 0 in the experiment datasets).							
End-of-file	The symbol '=' can be entered as the only character on the last line of a file to							
	indicate the end of a file. Its use is recommended to indicate whether a file has							
	unintentionally been truncated. (Used only in the ASCII implementation.)							

Figure 1. Overview of the ICASA standards representing relations among subsets in one experiment dataset. Most boxes represent subsets, which correspond to tables in a relational database or to XML elements. Note that several subsets contain data items that involve time series or multiple soil depths, so a complete representation of the relations may require additional database tables or hierarchies of XML elements. Weather and soil profile data are stored in separate datasets.

Figure 2. Example of an ICASA experimental details file. Note that lines that start with "!" are for

comments.

SEXPERIMENT: KSAS0401WH !Some general information is desirable in all files. *GENERAL @ NAME Fictitious experiment based on KSAS8101 @ LOCAL NAME MAIN FACTOR FACTORS FE(N) 4GE,4PL(Date),3IR,3FE(N) Godwin @ PEOPLE Wagger, M.G. Kissel, D. @ INSTITUTES Kansas State Univ. @ CONTACTS Hunt,L.A. thunt@uoguelph.ca @ NOTES Here should note any constraints and complications. Constraints could relate to: Soil physical conditions (surface compaction, duripan); Moisture deficit; Moisture excess; Nitrogen; Phosphorous; Potassium; Salinity; pH; Aluminum/Manganese; Boron; Other micro-nutrients; Above-ground diseases; Below-ground diseases; Nematodes; Aphids; Insects; Weeds; Other Complications could deal with: Stand loss (e.g., winter kill); Wind damage (->leaf shredding); Sandblasting; Hail; Lodging; Bird feeding; Shattering; Sprouting; Combine settings; Seed mixing; Animal grazing; Other. @ PUBLICATIONS Wagger, M.G., ???? N cycling in the plant-soil system. Ph.D., Kansas State @ DISTRIBUTION Use at will but acknowledge source. No secondary distribution @ VERSION ICASA1.0 10-08-2006(GH,JW,LAH;email) !With additional background information being added if thought Incressary for comprehensive documentation. @ OBJECTIVES To determine the degree of interaction between N and water supply @ DESIGN Assumed to be a randomized complete block. @ LAYOUT Not known. @ PLTA PLTR# PLTLN PLTOR PLTOD PLTSP PLTHA PLTH# PLTHL PLTHM 11.5 16.00 4.000 90.00 90.00 18.00 0.72 4 1.0 Hand !If plot organization cannot be documented as above, describe in 'Notes' @ METHODS Standard field-plot technique using cone seeder. Standard breeding observations for phenology. Hege combine for yield. MDAT2 obtained using dye absorption technique (MDAT loss of green) Small sub-plots for TWAD. Gravimetric procedures for SW1D @ FLAG FLAG_DETAILS 0 Data ok 1 Processing delay possibly spoiled sample. 2 Sampled spilled. Some grain possibly lost.

!And the following specific information is necessary in most cases. Data !subsets can be omitted, however, if the particular aspect (e.g., irrigation) !is not a factor in the experiment.

*TREAI	MENTS					F	ACT	'OR	LE/	/ELS	3			
@TRTNC	RP SQ OP CO TRT_I	JAME	GE	FL	SA	IC	PL	IR	FΕ	ОМ	CH	ΤI	ΕM	HA
1	1 1 1 1 0N,d	ryland+weeds Rep1	1	1	1	1	1	0	0	1	1	1	1	1
1	2 1 1 1 0N,d	yland+weeds Rep2	1	1	1	1	1	0	0	2	1	1	1	1
1	0 1 1 2 0N.du	vland+weeds	2	1	1	1	2	0	2	1	1	1	1	1
2	$0 \ 1 \ 1 \ 1 \ 180$ N	dryland	1	1	1	1	1	0	3	1	1	1	1	1
2		righted	1	1	1	1	1	1	0	1	1	1	1	1
-	$\begin{array}{c} 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1$	rrigated	1	1	1	1	1	1	2	1	1	1	1	1
4			1	1	1	1	1	1	2	1	1	1	1	1
5	0 I I I 180N	irrigated	1	T	1	1	1	T	3	1	1	1	1	1
6	0 I I I 180N	irrig(dap)	T	T	T	T	T	2	3	T	T	T	T	T
7	0 1 1 1 180N	(automatic)	1	1	1	1	1	3	3	1	1	1	1	1
7	0 2 1 1 RedC	lover Post-harvest	3	1	0	0	3	0	0	0	0	0	0	0
7	0 2 2 1 RedC	lover2 Postharvest	4	1	0	0	4	0	0	0	0	0	0	0
*GENOI	YPES													
@ GE	CR CUL_ID CUL_I	JAME												
1	WH IB0488 Newto	on Hard red winter	, Cer	ntra	al E	Plai	ns							
2	GW IB0001 Gary	cown Central Gt.Pla	ains	s qu	ıacł	kgra	ISS							
3	RC IB0001 Bigy:	leld General double	e cu	ıt										
4	RC IB0002 Early	wonder Single cut												
*FIELD	S													
@ FL	FL_COUNTRY	FL_REGION		E	FL_I	LOCA	TIO	N						
1	USA	Kansas		F	Rese	earc	h P	ark	c, A	Ashl	land			
@ FL	FL LAT FL LO	ONG FLELE FLSL 1	FLSI	L E	FLSI	LA F	ARE	AE	FLLV	V R				
1	$\frac{-}{37.1167}$ -90.4	+521 -99 20	2.0	0	c	90	2.2	6	_ 0	99				
— @ FT.		OWDC FI DRNTYPE FI		ਾਜ (3			-					
1	25	0 4 FLD 0 0	0)	10100	, I								
⊥ .דת @			ס פת ז	,		,								
е г <u>п</u> 1	MIII_22 2011	00401 KGVG KG	D.	,										
⊥ I Tho	weather station is	Apprifier can also h	no r	roc	ant	- ad	29	ahc	מזעזר	hal	0.117			
			ne F	TES	sein	Leu	as	SIIC	JWII	Lea	LOw •			
; r⊔ ; 1	WIN_55 SOIL	-35 WIN_DS SOII	u_D3)										
: 1	KSASU4UI KSAS.	200401 KSAS KS												
*SOTI	ANALYSES													
@ G7	SA NAME													
8 DA 1	Sajongo Aggogiat	og Isb												
0 C7	CAVE CADAY CAMU	CAMPY CAMPE												
@ 5A 1	SAIR SADAI SAMAI	SAMPA SAMRE												
	2004 260 -93		~ 7	DV	a 7									
@ SA	SABL SABDM SAU	SANI SAPHW SAPHB	SA	APX	SF	AKE								
T	15 -99 -99	9 -99 5.85 5.21	-	.99	-	-99								
+ - - - - - - -														
^INITI	AL_CONDITIONS													
@ IC	IC_NAME	·												
1	10 days before p	planting							_		-			
@ IC	ICRYR ICRDY ICPC	R ICRDP ICRIP ICRAG	IC	RN	IC	CRP	IC	RK	ICF	RLI	IC	RT	IC	'ND
1	2004 260 WI	H 10 50 2000	1.	00	1.	.00	-	99	10	0.0	1	00	-	-99
@ IC	ICYR ICDAY ICS	N ICWT ICIN ICRZC	ICR	RΖΕ										
1	2004 260 300) 100 100 -99	-	99										
@ IC	ICBL ICH20 ICNH	LICNO3												
1	5 0.205 3.4	4 9.8												
1	15 0.205 3.4	9.8												
1	30 0.170 3	2 7.3												
1	60 0.092 2	5 5.1												
1	90 0.065 2	2 4.7												
		-												

	1 1	120 150	0.066	2.7	4.3								
	1	180	0.66	2.7	4.3								
*1	PLANT	INGS											
@	PL	PL_N	AME _										
	1	Earl	y plan	ting									
	2	Late	plant	ing	C .								
	3	Plan	ting 2	5 days	after	harve	sting t	the pro	evious	crop			
~	4	Plan	ting 4	5 days	aiter	harves	sting t	the pro	evious	crop		DIDD	
@	РL 1	PLIR 2004	PLDOY	PLDOE	PLPOP	PLPOE 160	PLMA	PLDS	PLRS 17	PLRD	PLPH 1 0	PLDP	PLMWT
	1 2	2004	270	-99	102	102	2 7	R D	17 17	90	1.0	5.5 2 E	20
	2	_90	209	_99	400	400	2 2	R	_ 9 9	_90	1 0	0.0	20
	4	_99_	45	-99	400	400	c S	B	-99	-99	1.0	0.0	10
@	PT.	PLAGE	PLENV	PLSPL	PLGPC	PLMSO	URCE	D			1.0	0.0	± 0
Ŭ	1	0	-99	-99	97	Univ.	breede	er					
	2	0	-99	-99	90	Univ.	weed a	scient	ist				
	3	0	-99	-99	95	Univ.	breede	er					
	4	0	-99	-99	95	Univ.	breede	er					
*	IRRIG	ATIONS											
@	IR	IR_N	AME .										
	1	Irri	gation	on spe	ecifie	d date:	S						
	2	Irri	gation	on spe	ecifie	d days	aiter	plant	ıng				
	3 TD	AULO	matic .	irriga	cion								
w	1	10EFF 1 0		TONAC									
	⊥ 2	1.0	-99	-99									
	2	1.0	_99_	_99_									
@	TR	TRYR	TRDAY	TROP	TRVAL	TRADP	TRNPC						
Ŭ	1	2005	96	IR001	65	0	-99						
	1	2005	110	IR001	78	20	-99						
	1	2005	117	IR001	70	20	-99						
	2	-99	170	IR001	65	20	0.03						
	2	-99	200	IR001	78	20	0.05						
	2	-99	210	IR001	70	20	0.06						
@	IR	IIRYR	IIDAY	IISTG	IIROP	IIMDP	IITHR	IIEPT	IIVAL	IINPC			
	3	2005	200	-99	IRA01	60	60	85	-99	0.01			
	3	2005	250	-99	IRAUU	60	60	85	-99	0.05			
*1	FERTI	LIZERS	(INORG	ANIC)									
@	F.E.	FE_N	AME 1	140054		-1							
	2	App]	igatio	ng at y	olonti	or and	in cri	cina					
ര	ਟ ਧਾਧ	EEAD VDA	TCALIO. FFDAV	נ us ac קערט פוו		FFDFD	ти зы	L THÀ L THÀ L THÀ	гглмк	₽₽∧мС	₽₽∧м∩	FFOCD	
w	F E 2	2004	789	FF001		гылыр 15	F EAMN 60	FEAMP _99	- 99	FEAMC _99	FEAMO _99_	-99	
	3	2001	289	FE001	AP001	15	90	-99	-99	-99	-99	-99	
	3	2005	56	FE001	AP001	1	90	-99	-99	-99	-99	-99	
*(ORGAN	IIC MAT	ERIALS										
@	МО	OM_N.	AME										
	1	Low	lignin										
	2	High	ligni	n									
@	MO	OMYR	OMDAY	OMCD	OMACD	OMDEP	OMINP	OMAMT					
	1	2004	280	OM000	AP002	10	80	1000					
c	2	2004	280	OM000	AP002	10	80	1500	o				
@	OM	OMYR	OMDAY	OMH20	OMCPC	OMNPC	OMPPC	OMKPC	OMLPC				
	Ţ	2004	280	0.1	0.1	0.1	-99	-99	10				
	2	2004	280	υ.1	υ.1	υ.1	-99	-99	20				

*(*CHEMICALS															
@	CH	CH_NA	CH_NAME													
	1	Pre-p	Pre-plant weed control													
@	CH	CH_N(CH_NOTES													
	1	Poor	contro	ol of 1	leafy s	spurge	due to	o dry d	condit	ions						
@	CH	CHYR	CHDAY	CHCD	CHACD	CHDEP	CHAMT	CH_TAI	RGETS							
	1	2004	260	CH001	AP001	1.3	2.2	Broad-	-leaf v	weeds						
*:	*TILLAGE															
@	TI	TI_NAME														
	1 Standard preparation for wheat															
@	TI	TIYR	TIDAY	TIIMP	TIDEP	TIMIX	TI_NO	FES								
	1	2004	250	TI005	15.0	30	Lea ty	ype plo	ough w:	ith lor	ng molo	dboard				
*]	ENV_MO	DIFICA	ATIONS													
@	EM	EM_NA	AME													
	1	CO2 s	suppler	mentat	ion ear	rly										
@	EM	EMYR	EMDAY	ECDYL	EMDYL	ECRAD	EMRAD	ECMAX	EMMAX	ECMIN	EMMIN					
	1	2005	180	0	0	0	0	0	0	0	0					
	1	2005	220	0	0	0	0	0	0	0	0					
@	EM	EMYR	EMDAY	ECRAI	EMRAI	ECCO2	EMCO2	ECDEW	EMDEW	ECWND	EMWND					
	1	2005	180	0	0	R	600	0	0	0	0					
	1	2005	220	0	0	R	360	0	0	0	0					
*1	HARVES	TS														
@	HA	HA_NA	AME													
	1	Harve	est wit	th no s	screen	ing										
@	HA	HAYR	HADAY	HASTG	HACOM	HASIZ	HAPC	HABPC								
	1	2005	273	GS090	HACOP	HAS0A	100	50								
=																

Figure 3. Example of an ICASA summary data file.

\$EXPERIMENT:KSAS0401WH *SUMMARY The following are presented to indicates the general layout. !Actual data items will vary from experiment to experiment.In !most cases, some 'keys' (e.g.SQ,OP,CO) will not be necessary. !Mean values (RP=0) can be placed together at the top or bottom !of a data subset, or as individual rows after the corresponding !replicate data. @TRTNO RP SQ OP CO ADAT MDAT GWAM CWAM FLAGA 1 0 1 1 1 05162 05221 5700 12300 0 1 0 1 1 2 05162 -99 -99 1020 0 2 0 1 1 1 05158 05218 5500 12800 0 1 1 1 05162 05221 5700 10100 0 1 1 1 2 1 1 1 05162 05221 5700 9900 0 1 3 1 1 1 05162 05221 5700 10300 0 -99 1020 1 1 1 1 2 05162 0 -99 1 2 1 1 2 05162 -99 -99 810 0 1 3 1 1 2 05162 -99 -99 980 0 2 1 1 1 1 05158 05218 5500 13200 2 2 2 1 1 1 05158 05218 5500 13560 0 2 3 1 1 1 05188 06002 5500 12800 0 =

Figure 4. Example of an ICASA time-course data file.

\$EXPERIMENT:KSAS0401WH

<pre>IThe following are presented to indicates the general layout. Natual data items will vary from experiment to experiment.In Imost cases, some 'keys' (e.g.SQ.OP,CO) will not be necessary. Mean values (RP=0) can be placed together at the top or bottom lof a data subset, or as individual rows after the corresponding !replicate data. @TRTNO RP SQ OP CO YEAR DOY TWAD FLAGT 1 0 1 1 1 2005 063 1280 0 1 0 1 1 1 2005 092 4440 0 1 0 1 1 1 2005 092 4440 0 1 0 1 1 1 2005 120 10080 1 1 0 1 1 1 2005 120 10080 1 1 0 1 1 1 2005 092 4440 0 2 0 1 1 1 2005 092 4440 0 2 0 1 1 1 2005 092 4440 0 2 0 1 1 1 2005 063 1280 0 1 1 0 1 1 1 2005 063 1280 0 1 1 1 1 1 1 2005 063 1280 0 1 1 2 1 1 1 2005 063 1010 0 1 2 1 1 1 2005 063 1010 0 1 2 1 1 1 2005 063 1280 0 1 1 3 1 1 1 2005 063 1280 0 1 1 4 1 1 1 2005 063 1280 0 1 1 2 1 1 2 2005 063 090 0 1 2 1 1 2 2005 063 090 0 1 2 1 1 2 2005 063 880 0 1 1 3 1 1 2 2005 063 880 0 1 1 3 1 1 2 2005 092 4440 0 1 2 1 1 1 2005 092 4420 0 1 3 1 1 2 2005 092 1420 0 1 3 1 1 2 2005 092 1420 0 1 3 1 1 2 2005 092 1530 0 1 4 4 1 1 1 2005 092 1320 0 1 3 1 1 2 2005 092 1320 0 1 3 1 1 2 2005 092 1320 0 1 3 1 1 2 2005 092 1320 0 1 4 1 1 1 2005 092 1320 0 1 3 1 1 2 2005 092 1320 0 1 3 1 1 1 2005 092 1440 0 [data series truncated] @TRTNO RP SQ OP CO YEAR DOY SWID 1 0 1 1 1 2005 120 0.33 1 0 1 1 1 2005 092 0.23 1 3 1 1 2 2005 092 0.23 1 0 1 1 1 2005 092 0.23 1 1 1 1 1 1 2005 092 0.23 1 2 1 1 1 2005 092 0.23 1 3 1 1 1 2005 120 0.33 1 2 1 1 1 2005 120 0.35 1 3 1 1 1 2005 120</pre>	*TIME_C	COUR	SE											
<pre>!Actual data items will vary from experiment to experiment.In Imost cases, some 'keys' (e.g.SQ,OP,CO) will not be necessary. !Mean values (RP=0) can be placed together at the top or bottom !of a data subset, or as individual rows after the corresponding !replicate data. @TRTNO RP SQ OP CO YEAR DOY TWAD FLAGT 1 0 1 1 1 2005 063 1280 0 1 0 1 1 2 2005 092 4440 0 1 0 1 1 2 2005 120 10080 1 1 0 1 1 1 2005 120 10080 1 1 0 1 1 1 2005 063 1280 0 2 0 1 1 1 2005 063 1280 0 2 0 1 1 1 2005 063 1280 0 2 0 1 1 1 1 2005 063 1280 0 1 1 0 1 1 2 2005 063 1180 0 1 1 2 1 1 2 2005 063 1180 0 1 2 1 1 1 2005 063 1180 0 1 2 1 1 1 2005 063 1280 0 1 1 2 1 1 2 2005 063 1280 0 1 1 2 1 1 2 2005 063 1280 0 1 1 2 1 1 2 2005 063 1280 0 1 2 1 1 2 2005 063 1280 0 1 2 1 1 2 2005 063 1280 0 1 2 1 1 2 2005 063 180 0 1 2 1 1 2 2005 063 880 0 1 3 1 1 2 2005 063 880 0 1 4 1 1 1 2 2005 092 4440 0 1 4 1 1 1 2 2005 092 4450 0 1 4 1 1 1 2 2005 092 4450 0 1 4 1 1 1 2 2005 092 1440 0 1 3 1 1 1 2 2005 092 1440 0 1 4 1 1 1 2 2005 092 1440 0 1 4 1 1 1 2 2005 092 1440 0 1 4 1 1 1 2 2005 092 1440 0 1 4 1 1 1 2 2005 092 1440 0 [data series truncated] @TRTNO RP SQ OP CO YEAR DOY SW1D 1 0 1 1 1 2005 063 0.33 1 0 1 1 1 2005 063 0.33 1 1 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 1 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 1 1 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 3 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 1 1 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 2 1 1 1 2005 092 0.23 1 3 1 1 1 2005 120 0.35 1 3 1 1 1 2005 120 0.35</pre>	!The following are presented to indicates the general layout.													
<pre>!most cases, some 'keys' (e.g.SQ.OP.CO) will not be necessary. !Mean values (RP=0) can be placed together at the top or bottom !replicate data. @TRTNO RP SQ OP CO YEAR DOY TWAD FLAGT 1 0 1 1 1 2005 063 1280 0 1 0 1 1 1 2 2005 063 980 0 1 0 1 1 1 2 2005 092 4440 0 1 0 1 1 1 2 2005 092 1440 0 1 0 1 1 1 2 2005 120 10080 1 1 0 1 1 1 2 2005 120 10080 0 2 0 1 1 1 2 2005 063 1180 0 2 0 1 1 1 2 2005 063 1180 0 1 2 0 1 1 1 2005 063 1180 0 1 2 0 1 1 1 2 2005 063 1240 0 1 1 1 1 1 2005 063 1240 0 1 2 1 1 1 2 2005 063 1240 0 1 2 1 1 1 2 2005 063 1240 0 1 2 1 1 1 2 2005 063 1240 0 1 3 1 1 1 2 2005 063 1240 0 1 4 1 1 1 2 2005 063 1240 0 1 3 1 1 2 2005 063 1240 0 1 2 1 1 2 2005 063 800 0 1 2 1 1 2 2005 063 800 0 1 2 1 1 2 2005 092 4440 0 1 4 1 1 2 2005 092 4530 0 1 3 1 1 1 2 2005 092 4530 0 1 4 1 1 1 2 2005 092 4530 0 1 3 1 1 1 2 2005 092 1440 0 1 4 1 1 2 2005 092 1440 0 1 4 1 1 2 2005 092 1440 0 1 4 1 1 2 2005 092 1320 0 1 3 1 1 2 2005 092 1320 0 1 3 1 1 2 2005 092 1320 0 1 4 1 1 1 2 2005 092 1320 0 1 3 1 1 1 2 2005 092 1320 0 1 3 1 1 1 2 2005 092 1320 0 1 4 1 1 1 2 2005 092 0.23 1 0 1 1 1 1 2005 092 0.23 1 0 1 1 1 2005 092 0.23 1 0 1 1 1 2005 092 0.23 1 1 0 1 1 1 2005 092 0.23 1 1 0 1 1 1 2005 092 0.23 1 1 1 1 1 2005 092 0.23 1 2 1 1 1 2005 092 0.23 1 3 1 1 1 1 2005 092 0.23 1 3 1 1 1 2005 092 0.23 1 3 1 1 1 1 2005 092 0.23 1 3 1 1</pre>	!Actual data items will vary from experiment to experiment.In													
<pre>!Mean values (RP=0) can be placed together at the top or bottom !of a data subset, or as individual rows after the corresponding !replicate data. @TRTNO RP S0 OP CO YEAR DOY TWAD FLAGT 1 0 1 1 1 2 2005 063 1280 0 1 0 1 1 1 2 2005 092 4440 0 1 0 1 1 1 2 2005 092 4440 0 1 0 1 1 1 2 2005 120 10080 1 1 0 1 1 1 2 2005 120 10080 0 2 0 1 1 1 1 2005 063 1280 0 2 0 1 1 1 1 2005 063 1180 0 1 0 1 1 2 2005 063 1010 0 1 2 1 1 2 2005 063 1010 0 1 2 1 1 1 2005 063 1280 0 1 0 1 1 1 2 2005 063 1280 0 1 1 1 1 1 2005 063 1280 0 1 2 1 1 1 2005 063 1280 0 1 2 1 1 1 2005 063 1280 0 1 3 1 1 1 2 2005 063 1280 0 1 4 1 1 1 2 2005 063 1280 0 1 2 1 1 2 2005 063 180 0 1 3 1 1 1 2 2005 063 380 0 1 3 1 1 2 2005 063 380 0 1 4 1 1 1 2 2005 092 4640 0 1 2 1 1 2 2005 092 1640 0 1 3 1 1 1 2 2005 092 1640 0 1 2 1 1 2 2005 092 1640 0 1 2 1 1 2 2005 092 1640 0 1 3 1 1 1 2 2005 092 1640 0 1 3 1 1 1 2 005 092 1640 0 1 2 1 1 1 2 2005 092 1640 0 1 2 1 1 1 2 2005 092 1640 0 1 2 1 1 1 2 2005 092 1640 0 1 2 1 1 1 2 2005 092 1640 0 1 2 1 1 1 2 2005 092 1640 0 1 2 1 1 1 2 2005 092 1640 0 1 3 1 1 1 2 005 063 0.33 1 0 1 1 1 2 005 063 0.33 1 0 1 1 1 2 005 063 0.33 1 1 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 3 1 1 1 2005 063 0.33 1 4 1 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 3 1 1 1 2005 063 0.33 1 4 1 1 1 2005 092 0.23 1 3 1 1 1 2005 092 0.23 1 3 1 1 1 2005 092 0.23 1 3 1 1 1 2005 092 0.23 1 4 1 1 1 1 2005 092 0.23 1 3 1 1 1 2005 092 0.23 1 4 1 1 1 1 2005 092 0.23 1 3 1 1 1 20</pre>	!most d	case	s,	son	ne '	'keys'	(e.g.\$	SQ,OP,	CO) will not be necessary.					
<pre>!of a data subset, or as individual rows after the corresponding !replicate data. @TRTNO RP SQ OP CO YEAR DOY TWAD FLAGT 1 0 1 1 1 2005 063 1280 0 1 0 1 1 1 2 2005 092 1440 0 1 0 1 1 1 2 2005 092 1440 0 1 0 1 1 1 2 2005 120 10080 1 1 0 1 1 1 2 2005 120 10080 0 2 0 1 1 1 1 2005 063 1280 0 2 0 1 1 1 1 2005 063 1180 0 1 2 1 1 1 2005 063 1180 0 1 3 1 1 1 2005 063 1240 0 1 2 1 1 1 2005 063 1240 0 1 3 1 1 1 2005 063 1280 0 1 4 1 1 1 2005 063 1280 0 1 2 1 1 1 2 2005 063 1280 0 1 3 1 1 2 2005 063 1280 0 1 4 1 1 1 2 2005 063 1280 0 1 3 1 1 2 2005 063 1280 0 1 3 1 1 2 2005 063 880 0 1 3 1 1 2 2005 063 880 0 1 3 1 1 2 2005 063 880 0 1 1 3 1 1 2 2005 092 4440 0 1 2 1 1 1 2 2005 092 4530 0 1 4 1 1 1 2 2005 092 4530 0 1 3 1 1 2 2005 092 1320 0 1 3 1 1 2 2005 092 1440 0 [data series truncated] @TRTNO RP SQ OP CO YEAR DOY SWID 1 0 1 1 1 2005 092 02 1330 0 1 4 1 1 2 2005 093 1340 0 [data series truncated] #TRTNO RP SQ OP CO YEAR DOY SWID 1 0 1 1 1 2005 092 0.23 1 0 1 1 1 2005 063 0.33 1 2 1 1 2 2005 063 0.33 1 2 1 1 2 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 4 1 1 2 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 2 1 1 1 2005 092 0.23 1 3 1 1 1 2005 092 0.23 1 4 1 1 1 2005 092 0.23 1 3 1 1 1 2005 092 0.23 1 4 1 1 1 2005 092 0.23 1 3 1 1 1 2005 092 0.23 1 4 1 1 1 2005 092 0.23 1 3 1 1 1 2005 092 0.23 1 4 1 1 1 2005 092 0.23 1 3 1 1 1 2005 092 0.23 1 4 1 1 1 2005 092 0.23 1 3 1 1 1 2005 092 0.23 1 4 1 1 1 2005 092 0.23 1 3 1 1 1 2005 092 0.23 1 4 1 1 1 2005 092 0.23 1 3 1 1 1 2005 092 0.23 1 4 1 1 1 2005 092 0.23 1 3 1 1 1 2005 092 0.23 1 4 1 1 1 2005 092 0.23 1 2 1 1 1 2005 092 0.23 1 3 1 1 1 2005 092 0.23 1 2 1 1 1 2005 092 0.23 1 3 1 1 1 2005 092 0.23 1 3 1 1 1 2005 092 0.23 1 4 1 1 1 1 2005 092 0.23 1 4 1 1 1 1 2005 092 0.23 1 3 1 1 1 2005 092 0</pre>	!Mean v	valu	les	(RI	e=0)) can l	be plac	ced to	gether at the top or bottom					
<pre>!replicate data. @TRTNO RP SQ OP CO YEAR DOY TWAD FLAGT 1 0 1 1 1 2 2005 063 1280 0 1 0 1 1 1 2 2005 092 4440 0 1 0 1 1 1 2 2005 092 1440 0 1 0 1 1 1 2 2005 120 10080 1 1 0 1 1 1 2 2005 063 1280 0 2 0 1 1 1 1 2005 063 1280 0 2 0 1 1 1 1 2005 063 1180 0 1 2 1 1 1 2005 063 1180 0 1 2 1 1 1 2005 063 1240 0 1 3 1 1 1 2 2005 063 1240 0 1 4 1 1 1 2 2005 063 1280 0 1 2 1 1 1 2 2005 063 1280 0 1 2 1 1 1 2 2005 063 1280 0 1 3 1 1 1 2 2005 063 1280 0 1 1 2 1 1 2 2005 063 1280 0 1 1 3 1 1 1 2 2005 063 1280 0 1 1 3 1 1 1 2 2005 063 1280 0 1 1 4 1 1 1 2 2005 063 1280 0 1 1 2 1 1 2 2005 063 1280 0 1 1 3 1 1 2 2005 063 640 0 1 1 4 1 1 1 2 2005 063 880 0 1 3 1 1 2 2005 092 4320 0 1 3 1 1 1 2 2005 092 4320 0 1 3 1 1 2 2005 092 1320 0 1 3 1 1 2 2005 092 1320 0 1 3 1 1 2 2005 092 1440 0 2 1 1 1 1 1 2 2005 092 1440 0 1 1 1 1 1 1 2 2005 092 1440 0 1 2 1 1 2 2005 092 1230 0 1 3 1 1 1 2 2005 092 0.23 1 4 1 1 1 2 2005 092 0.23 1 0 1 1 1 2 2005 063 0.33 1 2 2 1 1 2 2005 092 0.23 1 3 1 1 1 2 2005 063 0.33 1 2 2 1 1 1 2 2005 063 0.33 1 2 2 1 1 1 2 2005 063 0.33 1 2 2 1 1 1 2 2005 063 0.33 1 2 2 1 1 1 2 2005 063 0.33 1 2 2 1 1 1 2 2005 063 0.33 1 2 2 1 1 1 2 2005 063 0.33 1 2 2 1 1 1 2 2005 063 0.33 1 2 2 1 1 1 2 2005 063 0.33 1 2 2 1 1 1 2 2005 092 0.23 1 3 1 1 1 1 2 2005 092 0.23 1 3 1 1 1 1 2 2005 092 0.23 1 3 1 1 1 1 2 2005 092 0.23 1 3 1 1 1 1 2 2005 092 0.23 1 3 1 1 1 1 2 2005 092 0.23 1 3 1 1 1 1 2 2005 092 0.23 1 3 1 1 1 1 2 2005 092 0.23 1 3 1 1 1 1 2 2005 092 0.23 1 3 1 1 1 1 2 2005 092 0.23 1 3 1 1 1 1 2 2005 092 0.23 1 3 1 1 1 1 2 2005 092 0.23 1 3 1 1 1 1 2 2005 092 0.23 1 3 1 1 1 1 2 2005 120 0.33 1 2 2 1 1 1 1 2 2005 120 0.33 1 2 2 1 1 1 1 2 2005 120 0.33 1 3 1 1 1 1 2 2005 120 0.33 1 3 1 1 1 1 2 2005 120 0.33 1 3 1 1 1 1 2 2005 120 0.33 1 3 1 1 1 1 2 2005 120 0.33 1 3 1 1 1 1 2 2005 120 0.33 1 3 1 1 1 1 2 2005 120</pre>	!of a d	data	. ຣເ	lbse	et,	or as	indivi	idual :	rows after the corresponding					
@TRTNO RP SQ OP CO YEAR DOY TWAD FLAGT 1 0 1 1 1 2005 063 1280 0 1 0 1 1 1 2005 063 1280 0 1 0 1 1 1 2005 092 4440 0 1 0 1 1 1 2005 120 1080 1 1 0 1 1 1 2005 120 1080 0 2 0 1 1 1 2005 063 1280 0 1 1 1 1 2005 063 1180 0 1 1 1 1 2005 063 1280 0 1 1 1 2 2005 063 380 0 1 1 1 2 2005 063 840 0 1 1 1 2 2005 092 4530 0 1 1	!replic	cate	da	ata.										
1 0 1 1 1 2005 063 1280 0 1 0 1 1 1 2 2005 063 980 0 1 0 1 1 1 2 2005 092 1440 0 1 0 1 1 1 2 2005 120 10080 1 1 0 1 1 1 2 2005 120 10080 1 1 0 1 1 1 2 2005 120 10080 0 2 0 1 1 1 1 2005 063 1280 0 2 0 1 1 1 2005 063 1010 0 1 1 1 1 1 2005 063 1010 0 1 2 1 1 1 2005 063 1180 0 1 3 1 1 1 2005 063 1240 0 1 4 1 1 1 2005 063 1240 0 1 3 1 1 1 2005 063 1240 0 1 4 1 1 2 2005 063 380 0 1 3 1 1 2 2005 063 380 0 1 3 1 1 2 2005 063 640 0 1 4 1 1 2 2005 063 640 0 1 4 1 1 2 2005 063 880 0 1 1 1 1 1 1 2005 092 4440 0 1 4 1 1 2 2005 063 092 0 1 2 1 1 2 2005 063 880 0 1 3 1 1 2 2005 063 880 0 1 4 1 1 2 2005 092 4420 0 1 3 1 1 1 2005 092 4420 0 1 4 1 1 2 2005 092 4430 0 1 3 1 1 2 2005 092 4320 0 1 3 1 1 2 2005 092 4320 0 1 3 1 1 2 2005 092 4430 0 1 4 1 1 1 2 2005 092 4430 0 1 3 1 1 1 2 2005 092 1440 0 1 4 1 1 1 2 2005 092 1440 0 1 2 1 1 2 2005 092 1420 0 1 3 1 1 2 2005 092 1420 0 1 3 1 1 2 2005 092 1420 0 1 4 1 1 1 2 005 092 02 1530 0 1 4 1 1 1 2 2005 092 1320 0 1 3 1 1 2 2005 092 1320 0 1 3 1 1 2 2005 092 1320 0 1 3 1 1 2 2005 092 023 1 0 1 1 1 2 005 063 0.33 1 0 1 1 1 2 005 063 0.33 1 0 1 1 1 2 005 063 0.33 1 1 1 1 1 1 2005 092 0.23 1 3 1 1 1 2 005 092 0.23 1 3 1 1 1 1 2005 092 0.23 1 4 1 1 1 1 1 2005 092 0.23 1 3 1 1 1 1 2005 092 0.23 1 4 1 1 1 1 1 2005 092 0.23 1 3 1 1 1 1 2005 120 0.33 1 1 1 1 1 1 1 2005 092 0.23 1 3 1 1 1 1 2005 092 0.23 1 4 1 1 1 1 2005 092 0.23 1 3 1 1 1 1 2005 120 0.33 1 2 1 1 1 1 1 2005 120 0.33 1 2 1 1 1 1 1 2005 120 0.33 1 2 1 1 1 1 1 2005 120 0.33 1 2 1 1 1 1 2005 120 0.33 1 3 1	@TRTNO	RP	SQ	OP	CO	YEAR	DOY	TWAD	FLAGT					
1 0 1 1 2 2005 063 980 0 1 0 1 1 1 2 2005 092 4440 0 1 0 1 1 2 2005 092 4440 0 1 0 1 1 2 2005 120 10080 1 1 0 1 1 2 2005 120 4080 0 2 0 1 1 1 2005 063 1280 0 2 0 1 1 1 2005 063 1280 0 1 1 1 1 1 2005 063 1180 0 1 2 1 1 1 2005 063 1180 0 1 3 1 1 2 2005 063 1240 0 1 4 1 1 1 2005 063 1240 0 1 4 1 1 1 2 2005 063 1240 0 1 2 1 1 2 2005 063 090 0 1 2 1 1 2 2005 063 090 0 1 2 1 1 2 2005 063 380 0 1 3 1 1 2 2005 063 880 0 1 3 1 1 2 2005 063 880 0 1 3 1 1 2 2005 092 4440 0 1 4 1 1 1 2005 092 4530 0 1 3 1 1 2 2005 063 880 0 1 1 1 1 1 2 2005 092 4640 0 1 2 1 1 1 2005 092 4420 0 1 4 1 1 1 2 2005 092 4640 0 1 2 1 1 1 2 2005 092 4640 0 1 2 1 1 1 2 2005 092 4640 0 1 2 1 1 1 2 2005 092 4640 0 1 3 1 1 1 2 2005 092 4640 0 1 4 1 1 1 2 2005 092 4440 0 1 4 1 1 1 2 2005 092 4440 0 1 4 1 1 1 2 2005 092 1440 0 1 4 1 1 1 2 2005 092 1440 0 1 4 1 1 1 2 2005 092 1640 0 1 2 1 1 1 2 2005 092 1640 0 1 2 1 1 1 2 2005 092 1640 0 1 2 1 1 1 2 2005 092 1640 0 1 2 1 1 1 2 2005 092 1640 0 1 2 1 1 1 2 2005 092 023 1 3 1 1 1 2 2005 092 0.23 1 4 1 1 1 2 2005 063 0.33 1 0 1 1 1 1 2005 063 0.33 1 0 1 1 1 1 2005 063 0.33 1 1 1 1 1 1 2005 063 0.33 1 1 1 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 4 1 1 1 1 2005 092 0.23 1 3 1 1 1 2 005 063 0.33 1 4 1 1 1 1 2005 092 0.23 1 3 1 1 1 2 005 092 0.23 1 4 1 1 1 1 2005 092 0.23 1 3 1 1 1 2 005 092 0.23 1 4 1 1 1 1 1 2005 092 0.23 1 4 1 1 1 1 1 2005 092 0.23 1 3 1 1 1 1 2005 092 0.23 1 4 1 1 1 1 1 2005 092 0.23 1 3 1 1 1 1 2005 092 0.23 1 4 1 1 1 1 1 2005 092 0.23 1 4 1 1 1 1 1 1 2005 092 0.23 1 3 1 1 1 1 2005 092 0.23 1 4 1 1 1 1 1 2005 092 0.23 1 3 1 1 1 1 2005 092 0.23 1 4 1 1 1 1 1 2005 092 0.23 1 3 1 1 1 1 2005 120 0.33 1 4 1 1 1 1 1 2005 120 0.33 1 2 1 1 1 1 1 2005 120 0.33 1 2 1 1 1 1 1 2005 120 0.33 1 3 1 1 1 1 1 2005 120 0.33 1 3 1 1 1 1 2005 120 0.33 1	1	0	ĩ	1	1	2005	063	1280	0					
1 0 1 1 1 2005 092 4440 0 1 0 1 1 1 2 2005 120 10080 1 1 0 1 1 1 2 2005 120 10080 0 2 0 1 1 1 2 2005 120 4080 0 2 0 1 1 1 2005 092 4440 0 2 0 1 1 1 2005 092 4440 0 2 0 1 1 1 2005 092 4440 0 1 1 1 1 1 2005 063 1010 0 1 2 1 1 1 2005 063 1240 0 1 4 1 1 1 2005 063 1240 0 1 4 1 1 1 2 2005 063 1240 0 1 2 1 1 2 2005 063 1240 0 1 4 1 1 2 2005 063 1240 0 1 2 1 1 2 2005 063 380 0 1 3 1 1 2 2005 063 380 0 1 3 1 1 2 2005 063 460 0 1 4 1 1 2 2005 063 460 0 1 1 1 1 1 2 2005 092 4440 0 1 2 1 1 1 2 2005 092 4640 0 1 2 1 1 1 2 2005 092 4640 0 1 2 1 1 1 2 2005 092 4640 0 1 2 1 1 1 2 2005 092 4640 0 1 2 1 1 2 2005 092 4440 0 1 3 1 1 2 2005 092 4440 0 1 4 1 1 2 2005 092 4440 0 1 4 1 1 2 2005 092 1440 0 1 2 1 1 2 2005 092 1440 0 1 3 1 1 2 2005 092 1440 0 1 4 1 1 2 2005 092 02 1530 0 1 4 1 1 1 2 005 092 02 1440 0 1 4 1 1 2 2005 092 0.23 1 0 1 1 1 2005 063 0.33 1 0 1 1 1 2005 063 0.33 1 0 1 1 1 2005 063 0.33 1 1 1 1 1 1 2005 063 0.33 1 1 1 1 1 2005 063 0.33 1 2 1 1 2 2005 063 0.33 1 1 1 1 1 1 2005 063 0.33 1 2 1 1 2 2005 092 0.23 1 3 1 1 1 2005 063 0.33 1 4 1 1 1 2005 092 0.23 1 3 1 1 1 2005 092 0.23 1 4 1 1 1 1 2005 092 0.23 1 3 1 1 1 2005 092 0.23 1 4 1 1 1 1 2005 092 0.23 1 4 1 1 1 1 2005 092 0.23 1 3 1 1 1 2005 092 0.23 1 4 1 1 1 1 1 2005 092 0.23 1 3 1 1 1 2005 092 0.23 1 4 1 1 1 1 1 2005 092 0.23 1 3 1 1 1 1 2005 092 0.23 1 3 1 1 1 1 1 1 2005 092 0.23 1 4 1 1 1 1 1 2005 092 0.23 1 3 1 1 1 1 1 1 1 2005 092 0.23 1 4 1 1 1 1 1 2005 120 0.33 1 1 1 1 1 1 1 2005 120 0.33 1 2 1 1 1 1 1 2005 120 0.33 1 2 1 1 1 1 2005 120 0.33 1 2 1 1 1 1 2005 120 0.33 1 2 1 1 1 1 1 2005 120 0.33 1 2 1 1 1 1 1 2005 120 0.33 1 3 1 1 1 1 2005 120 0.34	1	0	1	1	2	2005	063	980	0					
1 0 1 1 2 2005 092 1440 0 1 0 1 1 1 2005 120 10080 1 1 0 1 1 2 2005 120 4080 0 2 0 1 1 1 2005 063 1280 0 2 0 1 1 1 2005 063 1280 0 2 0 1 1 1 2005 063 1180 0 1 3 1 1 2005 063 1280 0 1 1 1 2005 063 1280 0 1 1 1 2005 063 1280 0 1 1 1 2 2005 063 880 0 1 1 1 2 2005 092 4530 0 1 1 1 2 2005 092 1530 0	1	0	1	1	1	2005	092	4440	0					
<pre>1 0 1 1 1 2 2005 120 10080 1 1 0 1 1 2 2005 120 4080 0 2 0 1 1 1 2005 063 1280 0 2 0 1 1 1 1 2005 063 1010 0 1 1 1 1 1 2005 063 1010 0 1 2 1 1 1 2005 063 1240 0 1 3 1 1 1 2005 063 1240 0 1 4 1 1 1 2 2005 063 1280 0 1 2 1 1 2 2005 063 380 0 1 3 1 1 2 2005 063 380 0 1 3 1 1 2 2005 063 640 0 1 4 1 1 2 2005 063 640 0 1 4 1 1 2 2005 063 640 0 1 4 1 1 2 2005 063 880 0 1 3 1 1 2 2005 092 4320 0 1 4 1 1 2 2005 092 4320 0 1 3 1 1 1 2 2005 092 4320 0 1 3 1 1 1 2 2005 092 4440 0 1 4 1 1 1 2 2005 092 4440 0 1 4 1 1 1 2 2005 092 4440 0 1 4 1 1 1 2 2005 092 1640 0 1 4 1 1 2 2005 092 1640 0 1 4 1 1 2 2005 092 1640 0 1 2 1 1 2 2005 092 1640 0 1 3 1 1 2 2005 092 1530 0 1 4 1 1 1 2 005 092 02 3 1 0 1 1 1 1 2005 092 02 3 1 0 1 1 1 2 005 092 0.23 1 0 1 1 1 2 005 063 0.33 1 0 1 1 1 2 005 063 0.33 1 0 1 1 1 2 005 063 0.33 1 1 1 1 2 005 063 0.33 1 1 1 1 2 005 063 0.33 1 2 1 1 1 2 005 063 0.33 1 1 1 1 1 2 005 063 0.33 1 2 1 1 1 2 005 063 0.33 1 1 1 1 1 2 005 063 0.33 1 2 1 1 1 2 005 063 0.33 1 1 1 1 1 1 2005 063 0.33 1 2 1 1 1 2 005 063 0.33 1 1 1 1 1 1 2005 063 0.33 1 2 1 1 1 2 005 063 0.33 1 1 1 1 1 1 2005 092 0.23 1 3 1 1 1 2 005 092 0.23 1 3 1 1 1 2 005 092 0.23 1 4 1 1 1 2 005 092 0.23 1 3 1 1 1 2 005 092 0.23 1 4 1 1 1 2 005 092 0.23 1 4 1 1 1 1 2005 092 0.23 1 4 1 1 1 1 2005 092 0.23 1 2 1 1 1 1 2005 092 0.23 1 3 1 1 1 1 2005 092 0.23 1 4 1 1 1 1 2005 120 0.33 1 2 1 1 1 1 1 2005 120 0.33 1 4 1 1 1 1 1 2005 120 0.33 1 2 1 1 1 1 1 2005 120 0.33 1 3 1 1 1 1 1 2005 120 0.33 1 3 1 1 1 1 1 2005 120 0.33 1 3 1 1 1 1 1 2005 120 0.33 1 3 1 1 1 1 1 2005 120 0.33 1 3 1 1 1 1 1 2005 120 0.33 1 3 1 1 1 1 1 2005 120 0.33 1 3 1 1 1 1 1 2005 120 0.35 1 3 1 1 1 1 1 2005 120 0.33 1 3 1</pre>	1	0	1	1	2	2005	092	1440	0					
<pre>1 0 1 1 2 2005 120 4080 0 2 0 1 1 1 1 2005 063 1280 0 2 0 1 1 1 1 2005 063 1010 0 1 1 1 1 1 2 005 063 1010 0 1 2 1 1 1 2005 063 1240 0 1 4 1 1 1 2 2005 063 1280 0 1 2 1 1 2 2005 063 1280 0 1 4 1 1 1 2 2005 063 1280 0 1 2 1 1 2 2005 063 080 0 1 3 1 1 2 2005 063 640 0 1 4 1 1 2 2005 063 880 0 1 3 1 1 2 2005 063 880 0 1 3 1 1 2 2005 092 4640 0 1 4 1 1 2 2005 092 4640 0 1 4 1 1 2 2005 092 4530 0 1 3 1 1 1 2 2005 092 1420 0 1 4 1 1 2 2005 092 1440 0 1 2 1 1 2 2005 092 1440 0 1 3 1 1 2 2005 092 1440 0 1 4 1 1 2 2005 092 1640 1 1 3 1 1 2 2005 092 1640 1 1 4 1 1 2 2005 092 1640 1 1 4 1 1 2 2005 092 1640 1 1 2 1 1 2 2005 092 1640 1 1 4 1 1 2 2005 092 1640 1 1 4 1 1 2 2005 092 1640 1 1 2 1 1 2 2005 092 1640 1 1 4 1 1 2 2005 092 1640 1 1 2 1 1 2 2005 092 1640 1 1 2 1 1 2 2005 092 1640 1 1 4 1 1 2 2005 092 0.23 1 3 1 1 2 2005 092 0.23 1 0 1 1 1 2 005 063 0.33 1 1 1 1 1 2005 063 0.33 1 2 1 1 1 2005 092 0.23 1 3 1 1 1 2005 092 0.23 1 3 1 1 1 2005 092 0.23 1 4 1 1 1 1 2005 092 0.23 1 2 1 1 1 2005 092 0.23 1 3 1 1 1 2005 092 0.23 1 4 1 1 1 1 2005 092 0.23 1 3 1 1 1 1 2005 092 0.23 1 4 1 1 1 1 2005 092 0.23 1 3 1 1 1 1 2005 092 0.23 1 4 1 1 1 1 1 2005 092 0.23 1 4 1 1 1 1 1 2005 092 0.23 1 4 1 1 1 1 2005 092 0.23 1 4 4 1 1 1 1 2005 092 0.23 1 4 4 1 1 1 1 2005 092 0.23 1 4 4 1 1 1 1 2005 092 0.23 1 4 4 1 1 1 1 2005 092 0.23 1 4 4 1 1 1 1 2005 092 0.23 1 4 4 1 1 1 1 2005 092 0.23 1 3 1 1 1 1 2005 120 0.33 1 4 4 1 1 1 1 2005 120 0.33 1 4 4 1 1 1 1 2005 120 0.31 1 4 4 1 1 1 1 2005 120 0.31 1 4 4 1 1 1 1 2005 120 0.31 1 4 4 1 1 1 1 2005 120 0.31 1 4 4 1 1 1 1 2005 120 0.31 1 4 4 1 1 1 1 2005 120 0.31 1 4 4 1 1 1 1 2005 120 0.31 1 4 4 1 1 1 1 2005 120 0.31 1 4 4 1 1 1 1 2005 120 0.31 1 4 4 1 1 1 1 2005 120 0.</pre>	1	0	1	1	1	2005	120	10080	1					
2 0 1 1 1 1 2005 063 1280 0 2 0 1 1 1 1 2005 092 4440 0 1 1 1 1 1 2005 063 1010 0 1 2 1 1 1 2005 063 1010 0 1 2 1 1 1 2005 063 1240 0 1 4 1 1 1 2005 063 1240 0 1 1 1 1 2 2005 063 090 0 1 2 1 1 2 2005 063 640 0 1 3 1 1 2 2005 063 880 0 1 3 1 1 2 2005 063 880 0 1 4 1 1 2 2005 092 4640 0 1 2 1 1 1 2005 092 4530 0 1 3 1 1 2 2005 092 4530 0 1 4 1 1 1 2 2005 092 4540 0 1 3 1 1 2 2005 092 4440 0 1 4 1 1 1 2 2005 092 4440 0 1 4 1 1 1 2 2005 092 4530 0 1 3 1 1 2 2005 092 1530 0 1 3 1 1 2 2005 092 1530 0 1 4 1 1 2 2005 092 1440 0 1 2 1 1 2 2005 092 023 1 1 0 1 1 1 2 2005 092 0.23 1 0 1 1 1 2 2005 092 0.23 1 0 1 1 1 2 2005 063 0.33 1 2 1 1 2 2005 063 0.33 1 1 1 1 2 2005 063 0.33 1 2 1 1 2 2005 063 0.33 1 0 1 1 1 2 2005 063 0.33 1 1 1 1 2 2005 063 0.33 1 2 1 1 2 2005 063 0.33 1 1 1 1 2 2005 063 0.33 1 2 1 1 1 2 2005 063 0.33 1 1 1 1 1 2005 063 0.33 1 2 1 1 1 2 2005 063 0.33 1 1 1 1 1 2 2005 063 0.33 1 2 1 1 1 2 2005 063 0.33 1 1 1 1 1 1 2005 063 0.33 1 2 1 1 1 2 2005 063 0.33 1 2 1 1 1 2 2005 063 0.33 1 3 1 1 1 2 2005 063 0.33 1 4 1 1 1 2 2005 063 0.33 1 2 1 1 1 2 2005 063 0.33 1 2 1 1 1 2 2005 063 0.33 1 3 1 1 1 2 2005 063 0.33 1 4 4 1 1 1 2005 092 0.23 1 3 1 1 1 2 2005 063 0.33 1 4 4 1 1 1 2 2005 063 0.33 1 4 4 1 1 1 2 2005 063 0.33 1 4 4 1 1 1 2 2005 063 0.33 1 4 4 1 1 1 2 2005 063 0.33 1 4 4 1 1 1 2 2005 092 0.23 1 3 1 1 1 1 2 2005 092 0.23 1 4 4 1 1 1 2 2005 092 0.23 1 4 4 1 1 1 2 2005 092 0.23 1 4 4 1 1 1 2 2005 092 0.23 1 4 4 1 1 1 2 2005 092 0.23 1 4 4 1 1 1 2 2005 092 0.23 1 4 4 1 1 1 2 2005 092 0.23 1 4 4 1 1 1 2 2005 092 0.23 1 4 4 1 1 1 2 2005 092 0.23 1 4 4 1 1 1 2 2005 092 0.23 1 4 4 1 1 1 2 2005 120 0.33 1 4 4 1 1 1 2 2005 120 0.33 1 4 4 1 1 1 2 2005 120 0.33 1 4 4 1 1 1 2 2005 120 0.33 1 3 1 1 1 1 2 2005 120 0.33 1 3 1 1 1 1 2 2005 120 0.33 1 3 1 1 1 1 2 2005 120 0.33 1 3 1 1 1 1 2 2005 120 0.33 1 3 1 1 1 1 2 005 120 0.33 1 3 1 1 1 1 2 005 120 0.33 1 3 1 1 1 1 2 005 120 0.33 1 3 1 1 1 1 2 005 120 0.33 1 3 1 1 1 1 2 005 120 0.33 1 3 1	1	0	1	1	2	2005	120	4080	0					
2 0 1 1 1 1 2005 092 4440 0 2 0 1 1 1 1 2005 120 10080 0 1 1 1 1 1 1 2005 063 1180 0 1 2 1 1 1 2005 063 1240 0 1 4 1 1 1 2005 063 1280 0 1 4 1 1 1 2 2005 063 1280 0 1 2 1 1 2 2005 063 380 0 1 3 1 1 2 2005 063 640 0 1 4 1 1 2 2005 063 880 0 1 1 1 1 1 2 2005 092 4640 0 1 4 1 1 2 2005 092 4640 0 1 2 1 1 1 2005 092 4440 0 1 3 1 1 2 2005 092 4530 0 1 4 1 1 1 2 2005 092 1640 0 1 4 1 1 1 2 2005 092 1640 0 1 2 1 1 2 2005 092 1640 0 1 3 1 1 2 2005 092 1640 0 1 4 1 1 2 2005 092 1640 0 1 3 1 1 2 2005 092 1640 0 1 4 1 1 2 2005 092 1440 0 1 1 1 1 1 2 2005 092 1640 0 1 2 1 1 2 2005 092 1640 0 1 3 1 1 2 2005 092 1640 0 1 3 1 1 2 2005 092 1640 0 1 3 1 1 2 2005 092 1640 0 1 4 1 1 1 2 2005 092 1630 0 1 4 1 1 1 2 2005 092 1630 0 1 4 1 1 1 2 005 063 0.33 1 0 1 1 1 2 005 063 0.33 1 0 1 1 1 2 005 063 0.33 1 1 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 1 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 1 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 1 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 1 4 1 1 1 2005 092 0.23 1 2 1 1 1 2005 092 0.23 1 4 1 1 1 1 2005 092 0.23 1 4 1 1 1 2005 120 0.33 1 2 1 1 1 2 005 120 0.33 1 2 1 1 1 2 005 120 0.31 1 4 4 1 1 1 2005 120 0.31 1 4 4 1 1 1 2005 120 0.33 1 2 1 1 1 1 2005 120 0.33 1 2 1 1 1 1 2005 120 0.33 1 3 1 1 1 1 2 005 120 0.33 1 3 1 1 1 1 2 005 120 0.33 1 3 1 1 1 1 2 005 120 0.33 1 3 1 1 1 1 2 005 120 0.33 1 3 1 1 1 1 2 005 120 0.33 1 3 1 1 1 1 2 005 120 0.33 1 3 1 1 1 1 2 005 120 0.33 1 3 1 1 1 1	2	0	1	1	1	2005	063	1280	0					
2 0 1 1 1 2 2005 120 10080 0 1 1 1 1 1 1 2 2005 063 1010 0 1 2 1 1 1 2 2005 063 1180 0 1 3 1 1 2 2005 063 1280 0 1 4 1 1 1 2 2005 063 1280 0 1 2 1 1 2 2005 063 090 0 1 2 1 1 2 2005 063 640 0 1 4 1 1 2 2005 063 640 0 1 4 1 1 2 2005 063 880 0 1 3 1 1 2 2005 092 4640 0 1 2 1 1 1 2005 092 4530 0 1 3 1 1 1 2005 092 4430 0 1 4 1 1 1 2005 092 4440 0 1 2 1 1 2 2005 092 4440 0 1 2 1 1 2 2005 092 1640 0 1 2 1 1 2 2005 092 1440 0 1 3 1 1 2 2005 092 1440 0 I 4 1 1 2 2005 092 023 1 1 0 1 1 1 2005 063 0.33 1 0 1 1 1 2005 063 0.33 1 0 1 1 1 2005 063 0.33 1 1 1 1 2 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 1 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 1 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 1 1 1 1 2005 063 0.33 1 1 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 1 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 1 1 1 1 2005 092 0.23 1 2 1 1 1 2005 092 0.23 1 2 1 1 1 2005 092 0.23 1 3 1 1 1 2005 092 0.23 1 4 4 1 1 1 2005 120 0.33 1 4 4 1 1 1 2005 120 0.33 1 2 1 1 1 1 2005 120 0.33 1 2 1 1 1 1 2005 120 0.31 1 4 4 1 1 1 2	2	0	1	1	1	2005	092	4440	0					
<pre>1 1 1 1 1 1 2005 063 1010 0 1 2 1 1 1 1 2005 063 1180 0 1 3 1 1 1 2005 063 1240 0 1 4 1 1 1 2005 063 1280 0 1 1 1 1 1 2 2005 063 090 0 1 2 1 1 2 2005 063 090 0 1 2 1 1 2 2005 063 640 0 1 4 1 1 2 2005 092 4640 0 1 4 1 1 2 2005 092 4640 0 1 2 1 1 1 2005 092 4530 0 1 3 1 1 1 2005 092 4530 0 1 3 1 1 1 2005 092 4430 0 1 4 1 1 1 2 2005 092 1640 0 1 2 1 1 1 2 2005 092 1640 0 1 1 1 1 1 2 2005 092 1640 0 1 2 1 1 2 2005 092 1530 0 1 4 1 1 2 2005 092 1440 0 1 3 1 1 2 2005 092 1440 0 1 3 1 1 2 2005 092 1440 0 1 4 1 1 2 2005 092 022 1640 0 1 2 1 1 2 2005 092 1440 0 1 1 1 1 1 2 005 092 092 1640 1 1 4 1 1 2 2005 092 1640 0 1 2 1 1 2 2005 092 1640 0 1 2 1 1 2 2005 092 1640 0 1 3 1 1 2 2005 092 1640 0 1 4 1 1 2 2005 092 0.23 1 4 1 1 2 2005 092 0.23 1 0 1 1 1 2005 063 0.33 1 0 1 1 1 2005 063 0.33 1 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 2 1 1 1 2005 092 0.23 1 3 1 1 1 2005 092 0.23 1 4 1 1 1 2005 092 0.23 1 4 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 2 1 1 1 2005 092 0.23 1 3 1 1 1 2005 092 0.23 1 4 1 1 1 2005 092 0.23 1 4 1 1 1 2005 092 0.23 1 4 1 1 1 2005 092 0.23 1 4 1 1 1 2005 092 0.23 1 4 1 1 1 2005 092 0.23 1 4 1 1 1 2005 092 0.23 1 4 4 1 1 1 2005 120 0.33 1 2 4 1 1 1 2005 120 0.33 1 2 4 1 1 1 2005 120 0.33 1 4 4 1 1 1 2005 120 0.33 1 4 4 1 1 1 2005 120 0.33 1 4 4 1 1 1 2005 120 0.33 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</pre>	2	0	1	1	1	2005	120	10080	0					
1 2 1 1 1 2005 063 1180 0 1 3 1 1 1 2005 063 1240 0 1 4 1 1 1 2005 063 1280 0 1 2 1 1 2 2005 063 090 0 1 2 1 1 2 2005 063 090 0 1 2 1 1 2 2005 063 880 0 1 3 1 1 2 2005 063 880 0 1 4 1 1 2 2005 092 4640 0 1 2 1 1 1 2005 092 4320 0 1 3 1 1 1 2005 092 4530 0 1 4 1 1 1 2005 092 4420 0 1 2 1 1 1 2 2005 092 1640 0 1 2 1 1 1 2 2005 092 1640 0 1 2 1 1 1 2 2005 092 1640 0 1 2 1 1 1 2 2005 092 1530 0 1 4 1 1 2 2005 092 1530 0 1 4 1 1 2 2005 092 1440 0 [data series truncated] @TRTNO RP SQ OP CO YEAR DOY SW1D 1 0 1 1 1 2005 063 0.33 1 0 1 1 1 2005 063 0.33 1 0 1 1 1 2005 063 0.33 1 1 1 1 2 205 063 0.33 1 2 1 1 1 2005 063 0.33 1 4 1 1 2 205 063 0.33 1 1 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 4 1 1 2005 063 0.33 1 4 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 4 1 1 1 2005 063 0.33 1 4 1 1 1 2005 063 0.33 1 1 4 1 1 1 2005 092 0.22 1 3 1 1 1 2005 092 0.23 1 4 1 1 1 2005 092 0.23 1 4 1 1 1 2005 092 0.23 1 4 1 1 1 2005 092 0.23 1 2 1 1 1 2005 092 0.23 1 3 1 1 1 2005 092 0.23 1 4 1 1 1 1 2005 092 0.23 1 4 1 1 1 1 2005 092 0.23 1 4 1 1 1 2005 092 0.23 1 4 1 1 1 1 1 2005 092 0.23 1 4 1 1 1 1 2005 120 0.33 1 2 2 1 1 1 1 2005 120 0.33 1 4 4 1 1 1 2005 120 0.33 1 5 5 120 0.33 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1	1	1	1	1	2005	063	1010	0					
<pre>1 3 1 1 1 2005 063 1240 0 1 4 1 1 1 2005 063 1280 0 1 1 1 1 1 2 2005 063 1280 0 1 2 1 1 2 2005 063 380 0 1 3 1 1 2 2005 063 640 0 1 4 1 1 2 2005 063 880 0 1 3 1 1 2 2005 092 4640 0 1 4 1 1 2 2005 092 4530 0 1 3 1 1 1 2005 092 4530 0 1 3 1 1 1 2005 092 4450 0 1 4 1 1 1 2005 092 4450 0 1 4 1 1 1 2 2005 092 1640 0 1 2 1 1 2 2005 092 1640 0 1 2 1 1 2 2005 092 1530 0 1 3 1 1 2 2005 092 1530 0 1 4 1 1 1 2 2005 092 1440 0 [data series truncated] @TRTNO RP SQ OP CO YEAR DOY SW1D 1 0 1 1 1 2005 092 0.23 1 0 1 1 1 2005 063 0.33 1 0 1 1 1 2005 063 0.33 1 1 1 1 2005 063 0.33 1 2 1 1 2 2005 063 0.33 1 1 1 1 2005 063 0.33 1 2 1 1 2 2005 063 0.33 1 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 1 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 1 1 1 1 1 2005 063 0.33 1 1 1 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 1 4 1 1 2005 092 0.23 1 3 1 1 1 2005 092 0.23 1 4 1 1 1 2005 092 0.23 1 4 1 1 1 2005 092 0.23 1 4 1 1 1 2005 092 0.23 1 4 1 1 1 2005 092 0.23 1 4 1 1 1 2005 092 0.23 1 4 1 1 1 2005 092 0.23 1 4 1 1 1 2005 092 0.23 1 4 4 4 1 1 1 2005 092 0.23 1 4 4 4 1 1 1 2005 092 0.23 1 4 4 4 1 1 1 2005 092 0.23 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4</pre>	1	2	1	1	1	2005	063	1180	0					
1 4 1 1 1 2005 063 1280 0 1 1 1 1 2 2005 063 090 0 1 2 1 1 2 2005 063 380 0 1 3 1 1 2 2005 063 640 0 1 4 1 1 2 2005 092 4640 0 1 1 1 2005 092 4530 0 1 3 1 1 2005 092 1640 0 1 1 1 2 2005 092 1530 0 1 4 1 1 2 2005 092 1440 0 [data series truncated] ///>////////////////////////////////	1	3	1	1	1	2005	063	1240	Õ					
<pre>1 1 1 1 1 2 2005 063 090 0 1 2 1 1 2 2005 063 380 0 1 3 1 1 2 2005 063 640 0 1 4 1 1 2 2005 063 880 0 1 1 1 1 1 1 2005 092 4640 0 1 2 1 1 1 2005 092 4530 0 1 4 1 1 1 2005 092 4440 0 1 2 1 1 2 2005 092 1640 0 1 2 1 1 2 2005 092 1640 0 1 2 1 1 2 2005 092 1320 0 1 3 1 1 2 2005 092 1320 0 1 3 1 1 2 2005 092 1440 0 [data series truncated]</pre> <pre>#TRTNO RP SQ OP CO YEAR DOY SW1D 1 0 1 1 1 2005 063 0.33 1 0 1 1 1 2005 063 0.33 1 0 1 1 1 2005 063 0.33 1 2 1 1 2 2005 063 0.33 1 2 1 1 2 2005 063 0.33 1 2 1 1 2 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 3 1 1 1 2005 063 0.33 1 4 1 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 4 1 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 4 1 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 4 1 1 1 1 2005 063 0.33 1 4 1 1 1 1 2005 063 0.33 1 4 1 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 4 1 1 1 1 2005 092 0.25 1 3 1 1 1 2005 092 0.23 1 4 1 1 1 1 2005 092 0.23 1 3 1 1 1 2005 092 0.23 1 4 1 1 1 1 2005 120 0.33 1 4 1 1 1 1 2005 120 0.33</pre>	1	4	1	1	1	2005	063	1280	0					
1 2 1 1 2 2 2005 063 380 0 1 3 1 1 2 2005 063 640 0 1 4 1 1 2 2005 063 640 0 1 4 1 1 2 2005 092 4640 0 1 2 1 1 1 2005 092 4320 0 1 3 1 1 1 2005 092 4320 0 1 3 1 1 1 2005 092 4440 0 1 1 1 1 1 2 2005 092 1640 0 1 2 1 1 2 2005 092 1320 0 1 3 1 1 2 2005 092 1320 0 1 3 1 1 2 2005 092 1530 0 1 4 1 1 2 2005 092 1440 0 [data series truncated] @TRTNO RP SQ OP CO YEAR DOY SW1D 1 0 1 1 1 2005 063 0.33 1 0 1 1 1 2005 063 0.33 1 0 1 1 1 2005 063 0.33 1 1 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 4 1 1 2 2005 092 0.23 1 0 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 4 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 4 1 1 1 2005 063 0.33 1 2 1 1 1 2005 092 0.23 1 3 1 1 1 2005 092 0.23 1 4 1 1 1 2005 092 0.23 1 4 1 1 1 2005 092 0.23 1 4 1 1 1 2005 092 0.23 1 3 1 1 1 2005 092 0.23 1 4 1 1 1 2005 092 0.23 1 3 1 1 1 2005 092 0.23 1 4 1 1 1 2005 092 0.23 1 3 1 1 1 2005 092 0.23 1 4 1 1 1 2005 092 0.23 1 4 1 1 1 2005 092 0.23 1 4 1 1 1 2005 092 0.23 1 3 1 1 1 2005 092 0.23 1 4 1 1 1 1 2005 092 0.23 1 1 1 1 1 1 1 2005 092 0.23 1 1 1 1 1 1 1 2005 092 0.23 1 1 1 1 1 1 2005 092 0.33 1 2 1 1 1 1 2005 092 0.33 1 2 2 1 1 1 1 2005 120 0.33 1 3 1 1 1 1 1 2005 120 0.33 1 3 1 1	1	1	1	1	2	2005	063	1200	Ũ					
<pre>1 2 1 1 2 2005 063 640 0 1 4 1 1 2 2005 063 640 0 1 1 1 1 1 2 2005 092 4640 0 1 2 1 1 1 2005 092 4320 0 1 3 1 1 1 2005 092 4430 0 1 4 1 1 1 2005 092 4440 0 1 1 1 1 2 2005 092 1640 0 1 2 1 1 2 2005 092 1640 0 1 2 1 1 2 2005 092 1530 0 1 4 1 1 2 2005 092 1440 0 [data series truncated] @TRTNO RP SQ OP CO YEAR DOY SW1D 1 0 1 1 1 2005 063 0.33 1 0 1 1 1 2005 063 0.33 1 0 1 1 1 2005 063 0.33 1 0 1 1 1 2005 063 0.33 1 1 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.31 1 4 1 1 1 2005 063 0.31 1 4 1 1 1 2005 063 0.31 1 4 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.31 1 4 1 1 1 2005 092 0.23 1 3 1 1 1 2005 092 0.23 1 4 1 1 1 2005 092 0.23 1 4 1 1 1 2005 092 0.23 1 4 1 1 1 2005 092 0.23 1 4 1 1 1 2005 120 0.33 1 2 1 1 1 2005 092 0.23 1 4 1 1 1 1 2005 092 0.23 1 4 1 1 1 1 2005 092 0.23 1 4 1 1 1 1 2005 092 0.33 1 2 1 1 1 2005 092 0.33 1 2 1 1 1 2005 092 0.33 1 2 1 1 1 2005 092 0.33 1 2 1 1 1 2005 120 0.33 1 2 1 1 1 2005 120 0.33 1 2 1 1 1 2005 120 0.33 1 2 1 1 1 1 2005 120 0.33 1 2 1 1 1 2005 120 0.33 1 2 1 1 1 2005 120 0.33 1 2 1 1 1 2005 120 0.33 1 2 1 1 1 1 2005 120 0.33 1 2 1 1 1 1 2005 120 0.33 1 2 1 1 1 1 2005 120 0.33 1 2 1 1 1 1 2005 120 0.33 1 2 1 1 1 1 2005 120 0.33 1 2 1 1 1 1 2005 120 0.33 1 2 1 1 1 1 2005 120 0.33 1 2 1 1 1 1 2005 120 0.33 1 2 1 1 1 1 2005 120 0.33 1 3 1 1 1 1 2005 120 0.33 1 3 1 1 1 1 2005 120 0.33 1 3 1 1 1 1 2005 120 0.33 1 3 1 1 1 1 2005 120 0.33 1 3 1 1 1 1 2005 120 0.33 1 3 1 1 1 1 2005 120 0.33 1 3 1</pre>	1	2	1	1	2	2005	063	380	Ũ					
<pre>1 4 1 1 2 2005 063 810 0 1 1 1 1 1 2005 092 4640 0 1 2 1 1 1 2005 092 4640 0 1 2 1 1 1 2005 092 4320 0 1 3 1 1 1 2005 092 4320 0 1 4 1 1 1 2005 092 4440 0 1 1 1 1 2 2005 092 1640 0 1 2 1 1 2 2005 092 1320 0 1 3 1 1 2 2005 092 1530 0 1 4 1 1 2 2005 092 1440 0 [data series truncated] @TRTNO RP SQ OP CO YEAR DOY SW1D 1 0 1 1 1 2005 063 0.33 1 0 1 1 1 2005 063 0.33 1 0 1 1 1 2005 063 0.33 1 1 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 1 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 1 1 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 1 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 1 4 1 1 1 2005 092 0.21 1 4 1 1 1 2005 092 0.23 1 2 1 1 1 2005 092 0.21 1 4 1 1 1 2005 092 0.23 1 2 1 1 1 2005 092 0.23 1 2 1 1 1 2005 092 0.23 1 4 1 1 1 2005 092 0.23 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</pre>	1	2	1	1	2	2005	063	640	Ũ					
<pre>1 1 1 1 1 2 2005 092 4640 0 1 2 1 1 1 1 2005 092 4640 0 1 2 1 1 1 2005 092 4320 0 1 3 1 1 1 2005 092 4530 0 1 4 1 1 1 2005 092 4440 0 1 1 1 1 1 2 2005 092 1640 0 1 2 1 1 2 2005 092 1320 0 1 3 1 1 2 2005 092 1530 0 1 4 1 1 2 2005 092 1440 0 [data series truncated] @TRTNO RP SQ OP CO YEAR DOY SWID 1 0 1 1 1 2005 063 0.33 1 0 1 1 1 2005 063 0.33 1 0 1 1 1 2005 063 0.33 1 0 1 1 1 2005 063 0.33 1 1 1 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 1 1 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 4 1 1 1 2005 063 0.33 1 4 1 1 1 2005 063 0.33 1 1 1 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 4 1 1 1 2005 063 0.33 1 4 1 1 1 2005 092 0.23 1 4 4 1 1 1 2005 120 0.33 1 4 4 1 1 1 1 20</pre>	1	4	1	1	2	2005	063	880	Ő					
1 2 1 1 1 2005 092 4320 0 1 3 1 1 1 2005 092 4530 0 1 4 1 1 1 2005 092 4440 0 1 1 1 2 2005 092 1640 0 1 2 1 1 2 2005 092 1530 0 1 3 1 1 2 2005 092 1530 0 1 4 1 1 2 2005 092 1440 0 [data series truncated] @TRTNO RP SQ OP CO YEAR DOY SWID 1 0 1 1 2005 063 0.33 1 0 1 1 2005 063 0.33 1 1 1 2005 063 0.33 1 1 1 2005 092 0.23 1 1 1 1 2005 0.33 1	1	1	1	1	1	2005	005	4640	Ũ					
1 2 1 1 1 2005 092 4530 0 1 3 1 1 1 2005 092 4530 0 1 4 1 1 1 2005 092 4440 0 1 1 1 1 1 2 2005 092 1640 0 1 2 1 1 2 2005 092 1320 0 1 3 1 1 2 2005 092 1530 0 1 4 1 1 2 2005 092 1440 0 [data series truncated] @TRTNO RP SQ OP CO YEAR DOY SW1D 1 0 1 1 1 2005 063 0.33 1 0 1 1 1 2005 063 0.33 1 0 1 1 1 2005 063 0.33 1 1 1 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 3 1 1 1 2005 063 0.33 1 4 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 1 1 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 4 1 1 1 2005 063 0.33 1 1 1 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 2 1 1 1 2005 092 0.22 1 3 1 1 1 2005 092 0.23 1 2 1 1 1 2005 092 0.23 1 3 1 1 1 2005 092 0.23 1 4 1 1 1 2005 092 0.23 1 4 1 1 1 2005 120 0.33 1 2 1 1 1 2005 120 0.33 1 4 1 1 1 2005 120 0.33 1 4 1 1 1 2005 120 0.33 1 2 1 1 1 2005 120 0.33 1 4 1 1 1 2005 120 0.33 1 4 1 1 1 2005 120 0.33 1 2 1 1 1 2005 120 0.33 1 2 1 1 1 2005 120 0.33 1 4 1 1 1 2005 120 0.33 1 2 1 1 1 2005 120 0.33 1 3 1 1 1 2005 120 0.33 1 4 1 1 1 2005 120 0.33 1 3 1 1 1 2005 120 0.33 1 4 1 1 1 2005 120 0.31 1 4 1 1 1 2005 120 0.31 1 4 1 1 1 2005 120 0.31 1 4 4 1 1 1 2005 120 0.31 1 4 4 1 4 1 1 1 2005 120 0.31 1 4 4 1 4 1 4 1 1 2005 120 0.31 1 4 4 1 4 1 4 1 1 2005 120 0.31 1 4 4 1 4 1 4 2005 120 0.31 1 4 4 1 4 1 4 2005 120 0.31 1 4 4 1 4 1 4 1 4 2005 120 0.31 1 4 4 1 4 4 1 4 4 4 4 4 4 4 4 4 4 4 4 4	1	2	1	1	1	2005	092	4320	Ő					
1 4 1 1 1 2005 092 4440 0 1 1 1 1 2 2005 092 1640 0 1 2 1 1 2 2005 092 1320 0 1 3 1 1 2 2005 092 1530 0 1 4 1 1 2 2005 092 1530 0 1 4 1 1 2 2005 092 1440 0 [data series truncated] ####################################	1	2	1	1	1	2005	092	4530	0					
1 1 1 1 1 2005 092 1640 0 1 2 1 1 2005 092 1320 0 1 3 1 1 2 2005 092 1530 0 1 4 1 1 2 2005 092 1440 0 [data series truncated] @TRTNO RP SQ OP CO YEAR DOY SW1D 1 0 1 1 2005 063 0.33 1 0 1 1 2005 063 0.33 1 1 1 2005 063 0.33 1 0 1 1 2005 063 0.33 1 1 1 2005 063 0.33 1 1 1 2005 063 0.33 1 1 1 2005 092 0.23 1 3 1 1 2005 092 0.23 1 1 1 1 2005 120 0.33 1	1	4	1	1	1	2005	092	4440	Ő					
1 1 1 1 2 2005 092 1320 0 1 3 1 1 2 2005 092 1530 0 1 4 1 1 2 2005 092 1530 0 1 4 1 1 2 2005 092 1440 0 [data series truncated] [data series truncated] [minor RP SQ OP CO YEAR DOY SW1D 0 1 1 1 2005 092 0.23 1 0 1 1 2005 063 0.33 1 1 1 2005 063 0.33 1 1 1 2005 063 0.33 1 1 1 1 2005 063 0.33 1 1 1 2005 092 0.23 1	1	т 1	1	1	・ 2	2005	002	1640	0					
$\begin{bmatrix} 1 & 2 & 1 & 1 & 2 & 2005 & 092 & 1520 & 0 \\ 1 & 3 & 1 & 1 & 2 & 2005 & 092 & 1530 & 0 \\ 1 & 4 & 1 & 1 & 2 & 2005 & 092 & 1440 & 0 \\ \end{bmatrix}$ @TRTNO RP SQ OP CO YEAR DOY SW1D $\begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 2005 & 063 & 0.33 \\ 1 & 0 & 1 & 1 & 1 & 2005 & 092 & 0.23 \\ 1 & 0 & 1 & 1 & 1 & 2005 & 120 & 0.33 \\ 1 & 1 & 1 & 1 & 1 & 2005 & 063 & 0.33 \\ 1 & 2 & 1 & 1 & 1 & 2005 & 063 & 0.31 \\ 1 & 4 & 1 & 1 & 1 & 2005 & 063 & 0.33 \\ 1 & 4 & 1 & 1 & 1 & 2005 & 092 & 0.22 \\ 1 & 3 & 1 & 1 & 1 & 2005 & 092 & 0.23 \\ 1 & 2 & 1 & 1 & 1 & 2005 & 092 & 0.23 \\ 1 & 2 & 1 & 1 & 1 & 2005 & 092 & 0.23 \\ 1 & 2 & 1 & 1 & 1 & 2005 & 092 & 0.23 \\ 1 & 4 & 1 & 1 & 1 & 2005 & 092 & 0.23 \\ 1 & 1 & 1 & 1 & 1 & 2005 & 120 & 0.33 \\ 1 & 2 & 1 & 1 & 1 & 2005 & 120 & 0.33 \\ 1 & 2 & 1 & 1 & 1 & 2005 & 120 & 0.33 \\ 1 & 2 & 1 & 1 & 1 & 2005 & 120 & 0.33 \\ 1 & 4 & 1 & 1 & 1 & 2005 & 120 & 0.31 \\ 1 & 4 & 1 & 1 & 1 & 2005 & 120 & 0.33 \\ \end{bmatrix}$	1	2	1	1	2	2005	092	1320	0					
$\begin{bmatrix} 1 & 3 & 1 & 1 & 2 & 2005 & 092 & 1330 & 0 \\ 1 & 4 & 1 & 1 & 2 & 2005 & 092 & 1440 & 0 \\ \end{bmatrix}$ @TRTNO RP SQ OP CO YEAR DOY SW1D $\begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 2005 & 063 & 0.33 \\ 1 & 0 & 1 & 1 & 1 & 2005 & 092 & 0.23 \\ 1 & 0 & 1 & 1 & 1 & 2005 & 120 & 0.33 \\ 1 & 1 & 1 & 1 & 1 & 2005 & 063 & 0.33 \\ 1 & 2 & 1 & 1 & 1 & 2005 & 063 & 0.35 \\ 1 & 3 & 1 & 1 & 1 & 2005 & 063 & 0.33 \\ 1 & 4 & 1 & 1 & 1 & 2005 & 063 & 0.33 \\ 1 & 4 & 1 & 1 & 1 & 2005 & 063 & 0.33 \\ 1 & 1 & 1 & 1 & 2005 & 063 & 0.23 \\ 1 & 2 & 1 & 1 & 2005 & 092 & 0.225 \\ 1 & 3 & 1 & 1 & 2005 & 092 & 0.225 \\ 1 & 3 & 1 & 1 & 2005 & 092 & 0.23 \\ 1 & 4 & 1 & 1 & 1 & 2005 & 092 & 0.23 \\ 1 & 4 & 1 & 1 & 1 & 2005 & 120 & 0.33 \\ 1 & 2 & 1 & 1 & 2005 & 120 & 0.33 \\ 1 & 2 & 1 & 1 & 2005 & 120 & 0.33 \\ 1 & 2 & 1 & 1 & 2005 & 120 & 0.33 \\ 1 & 4 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 4 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 4 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 &$	1	2	1	1	2	2005	002	1520	0					
I I	1	1	1	1	2	2005	092	1//0	0					
[data series truncated] @TRTNO RP SQ OP CO YEAR DOY SW1D 1 0 1 1 1 2005 063 0.33 1 0 1 1 1 2005 092 0.23 1 0 1 1 1 2005 120 0.33 1 1 1 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.35 1 3 1 1 1 2005 063 0.31 1 4 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.33 1 1 1 1 1 2005 092 0.23 1 2 1 1 1 2005 092 0.25 1 3 1 1 1 2005 092 0.21 1 4 1 1 1 2005 092 0.23 1 2 1 1 1 2005 092 0.23 1 2 1 1 1 2005 092 0.23 1 3 1 1 1 2005 120 0.33 1 2 1 1 1 2005 120 0.33 1 2 1 1 1 2005 120 0.35 1 3 1 1 1 2005 120 0.31 1 4 1 1 1 1 2005 120 0.31 1 4 1 1 1 2005 120 0.31 1 4 1 1 1 2005 120 0.31 1 5 1 1	T	т	Ŧ	Т	2	2005	092	1440	0					
@TRTNO RP SQ OP CO YEAR DOY SW1D 1 0 1 1 1 2005 063 0.33 1 0 1 1 1 2005 092 0.23 1 0 1 1 1 2005 120 0.33 1 0 1 1 1 2005 120 0.33 1 1 1 1 2005 063 0.33 1 1 1 1 2005 063 0.33 1 2 1 1 1 2005 063 0.31 1 4 1 1 2005 063 0.33 1 1 1 2005 092 0.23 1 1 1 2005 092 0.21 1 4 1 1 2005 092 0.23 1 1 1 2005 120 0.33 1 2 1 1 2005 120 0.33 1	[data s	seri	es	trı	ıncə	ated]								
1 0 1 1 2005 063 0.33 1 0 1 1 2005 092 0.23 1 0 1 1 2005 063 0.33 1 0 1 1 2005 092 0.23 1 0 1 1 2005 120 0.33 1 1 1 2005 063 0.33 1 2 1 1 2005 063 0.33 1 2 1 1 2005 063 0.33 1 3 1 1 2005 063 0.33 1 4 1 1 2005 092 0.23 1 1 1 2005 092 0.23 1 1 1 2005 092 0.23 1 1 1 2005 120 0.33 1 2 1 1 2005 120 0.33 1 2 1 <td>֎୷ໟຆຑ୰</td> <td>ЪD</td> <td>٩O</td> <td>ΩÞ</td> <td>CO</td> <td>VFAR</td> <td>лол</td> <td>GW1D</td> <td></td>	֎୷ໟຆຑ୰	ЪD	٩O	ΩÞ	CO	VFAR	лол	GW1D						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	0	1	1	1	2005	063	0 33						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	0	1	1	1	2005	005	0.33						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	0	1	1	1	2005	120	0.23						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1	1	1	1	2005	063	0.33						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	2	1	1	1	2005	063	0.35						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	2	1	1	1	2005	063	0.33						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	4	1	1	1	2005	063	0.31						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1	1	1	1	2005	005	0.33						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	2	1	1	1	2005	092	0.25						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	2	1	- 1	- 1	2005	002	0.25						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	4	1	- 1	- 1	2005	002	0.21						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1	1	- 1	1	2005	120	0.73						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	2	1	1	1	2005	120	0.35						
1 4 1 1 1 2005 120 0.33	1	2 2	1	- 1	1 1	2005	120	0.33						
	1	4	1	1	1	2005	120	0.33						

=

Figure 5. Example of an ICASA Weather File

```
$WEATHER:KSAS
!The following data subset is desirable.
*GENERAL
@ PEOPLE
 Wagger, M.G. Kissel, D.
@ INSTITUTES
 Kansas State Univ.
@ CONTACTS
 Hunt,L.A. thunt@uoguelph.ca
@ NOTES
 Wind and dewpoint included; wind in m/s as average over 24h
 Data from DSSAT 3.0 file
@ DISTRIBUTION
 Use at will but acknowledge source. No secondary distribution
@ VERSION
 ICASA1.0 10-08-2006 (GH, JW, LAH; email)
! And additional data items can be added for comprehensive documentation:
@ METHODS
 Standard Met Station instruments
@ PUBLICATIONS
 None of direct application
@ FLAG FLAG_DETAILS
    0 All data ok
     1 SRAD estimated from sun hours
!And data subsets similar to the following are necessary for all stations.
*WEATHER_STATION:KSAS2004
@ NAME
 Example weather dataset
@ COUNTRY
             REGION
                               LOCATION
 USA
             Kansas
                               Ashland
@ LAT
             LONG
                         ELEV
                               TAV TAMP TEMHT WNDHT
                                                       CO2 CO2A
    37.1137
                               8.5 18.9
             -90.4567
                         81
                                            2.0
                                                  2.0
                                                       370
                                                            1.1
@ YEAR DOY SRAD TMAX TMIN RAIN FLAGW
 2004
          1 11.5
                   1.4 -1.4
                               3.5
                                         1
 2004
          2 11.4
                    0.0 -2.1
                               2.5
                                         0
[data series truncated]
!Additional data items can be added as illustrated below.
@ YEAR DOY SRAD TMAX TMIN RAIN WIND TDEW
          1 11.5
 2004
                    1.4 -1.4
                               3.5
                                      4.2
                                            0.6
 2004
          2 11.4
                    0.0 -2.1
                                2.5
                                    5.4
                                            0.5
[data series truncated]
```

Figure 6. Example of an ICASA Soils File.

\$SOIL:KS

!Some general information is desirable in all files. *GENERAL @ PEOPLE Wagger, M.G. Kissel, D. @ INSTITUTES Kansas State Univ. @ CONTACTS Hunt,L.A. thunt@uoguelph.ca @ NOTES Put together to illustrate the ICASA standard files. Fictitious @ DISTRIBUTION Use at will but acknowledge source. No secondary distribution @ VERSION ICASA1.0 10-08-2006 (GH,JW,LAH;email) @ METHODS Standard Soil Survey + Ritchie algorithms to obtain H2O limits @ PUBLICATIONS None of direct application !And specific information similar to that shown below is necessary !for each soil. *SOIL_PROFILE:KSAS200401 @ NAME Example soils file

@ COUNTRY REGION LOCATION USA Kansas Ashland @ LAT LONG ELEV SLOPE 37.1167 -90.4529 81 1.5 @ SLLB CLAY SILT SLCF SLOC SLPHW SLBDM 5 7.92 16.31 3.25 1.89 8.5 1.42 30 7.92 16.31 3.25 1.89 8.5 1.42 60 6.35 10.61 1.52 0.88 8.5 1.67 90 5.04 10.28 1.14 0.66 8.6 1.69 190 5.72 12.08 1.72 0.99 8.6 1.53

!With the following added if available.																
@ SL_S	SYSTEM	CLASS	SIFICA	ΓΙΟΝ												
NRCS	S(USDA)	Coars	se-silt	ty,mixe	d,cald	careous										
@ SALE	B SLU1	SLDR	SLRO	SLNF	SLPF	SLDN										
0.13	3 12	0.12	84	1.0	1.0	0.30										
@ SLLE	B SLLL	SLDUL	SLSAT	SKSAT	SLNI	SLPHB	SLCEC	SLADC	SLRGF	SCMPF						
5	5 0.12	0.32	0.48	12.8	2.0	8.5	255	0.0	1.0	0.0						
30	0 0.12	0.32	0.48	12.8	1.5	8.5	255	0.0	1.0	0.0						
60	0 0.09	0.22	0.38	6.1	1.0	8.5	255	0.0	0.4	0.6						
9(0.08	0.21	0.37	9.5	0.4	8.6	235	0.4	0.4	0.6						
190	0 0.09	0.24	0.43	6.4	-99	8.6	235	1.6	0.4	0.6						
!And f	further	data d	dealing	g with	chemic	cal cha	aracter	ristics	s that	may be						
!neede	ed for a	special	l appl:	ication	.s adde	ed if r	require	ed and	availa	able.						
@ SLLE	B SLPX	SLPT	SLPO	CACO3	SLAL	SLFE	SLMN	SLBS	SLPA	SLPB	SLKE	SLMG	SLNA	SLSU	SLEC	SLCA
Ę	5 -99	-99	-99	-99	4.0	-99	-99	-99	4.0	4.0	5.0	-99	-99	-99	-99	3.0
30	0 -99	-99	-99	-99	4.0	-99	-99	-99	4.0	4.0	5.0	-99	-99	-99	-99	3.0
60	0 -99	-99	-99	-99	4.0	-99	-99	-99	4.0	4.0	5.0	-99	-99	-99	-99	3.0
9(0 -99	-99	-99	-99	4.0	-99	-99	-99	4.0	4.0	5.0	-99	-99	-99	-99	3.0
190	0 -99	-99	-99	-99	4.0	-99	-99	-99	4.0	4.0	5.0	-99	-99	-99	-99	3.0