
An Approach for Modular
Crop Model Development

August 3, 1999

C.H. Porter, R. Braga, J.W. Jones

Agricultural and Biological Engineering Department
Research Report No 99-0701

University of Florida, Gainesville, Florida

Page ii

Table of Contents

1.0 Introduction ...1

2.0 Module Definition and Structure..2

3.0 A Simple Crop-Soil Water Model Example ...2

4.0 Plant growth module (PLANT.FOR) ...7
4.1 Initialization...7
4.2 Rate calculations ..7
4.3 Integration..9
4.4 Output..9
4.5 Close..9

5.0 Soil Water Balance Module (SW.FOR) ...9
5.1 Initialization...9
5.2 Rate calculations .. 10
5.3 Integration.. 11
5.4 Output.. 12
5.5 Close.. 12

6.0 Weather module (WEATHR.FOR) .. 13

7.0 References... 13

Page 1

1.0 Introduction

One of ICASA's main goals is to promote the more effective and efficient development and
use of models of agricultural systems. Considerable progress has been made on the definition
and documentation of data formats and files for use in crop simulation models. ICASA v1.0
Data Standards have been provided on this web site to encourage the compatibility of data
sets for documenting experiments and for providing soil and weather data in formats that can
be widely exchanged and used by different groups. These so-called data standards are not
intended to replace all other methods and approaches used for storing data. Instead, they are
intended to provide a convenient way for all who are interested in such data to access it and
use it for their own purposes. We have found that the standards facilitate cooperation among
experimentalists, model developers, and model users.

A second initiative, underway for over two years, has attempted to develop or identify more
effective model development and documentation approaches. In particular, we have
recognized the need to adopt modular programming approaches. As new components are
added to crop growth models to expand capabilities, the models have become increasingly
complex. This has generated a need for a modular structure for the crop models such that
new components can be added, modified and maintained with minimal effort. This modular
approach will:
1) Facilitate the ability to integrate knowledge from different disciplines, thus improving the

prediction capability of the models.
2) Allow contributions from many authors,
3) Allow greater flexibility in future updates to models, with modules being added, modified

or replaced with little impact to the main program or other modules.
4) Extend the life and utility of simulation models.

We now have experience with one particular approach to modular model development in
several institutions that are contributing to ICASA. This approach is presented in this
document. However, we realize that it is not the only approach to modular model
development and thus we are collectively looking into other approaches that we can
recommend to those who wish to contribute to more modular development of models and
applications. The approach presented in this paper is based on the methods developed by
Kraalingen (1995) and used extensively in the FSE/FST models developed by researchers at
the Wageningen Agricultural University. It has been adapted by researchers at the University
of Florida and used to develop models in Fortran and other computer languages. The
approach is being used to reprogram and document the comprehensive CROPGRO model.
This includes development of modules for phenology, soil water balance, crop growth,
weather, soil organic matter and nitrogen balance, and pest damage.

In this document, a description of one recommended modular approach is given along with
an example in which a simple crop and soil water model have been programmed as modules,
using the FORTRAN 90 language. The soil water and crop growth modules have been
greatly simplified to allow us to focus on the approach instead of the relationships used in the
modules. Thus, the model should not be used for other purposes. A listing of the FORTRAN
code and input data files are also provided in an Appendix. The modules and an executable
file can be downloaded to allow those who are interested in the approach to become more
familiar with it.

Page 2

We welcome feedback on the approach described in this document as well as suggestions for
other useful modular approaches.

2.0 Module Definition and Structure

Reynolds and Acock (1997) and Acock and Reynolds (1989) proposed design criteria and
rules for a generic modular structure for crop models. These include:

1) The modules should relate directly to real world components or processes that are
common to all plants to be modeled.

2) Modules should represent a separate disciplinary function;
3) Input and output variables should represent measurable values;
4) Communication between modules should be solely via the input and output variables; and
5) Modules should be validated independently of other modules.

These criteria have been used in the decision of what components of the model will comprise
each module. Based on the first criteria, above, each module represents a physical function
or process related to crop growth and consists of, as a minimum, a single FORTRAN
subroutine, or a group of linked subroutines. These module processes are interdependent, but
can be linked solely through a defined set of input and output variables, which are passed
into and out of the modules as subroutine arguments.

The following guidelines, based on the approach of van Kraalingen (1995) and adapted by
Kenig and Jones (1997) are proposed for the construction of modules. Each module should:
1) Read its own parameters;
2) Initialize its own variables;
3) Accept variables passed to it from other modules and the environment;
4) Pass variables that are computed within the module;
5) Own its set of state variables;
6) Compute rates of change for its state variables;
7) Integrate its state variables;
8) Write its own variables as output; and
9) Operate when linked to a dummy test program.

Thus, all data input, initialization of variables, rate calculations, integration calculations and
output of data related to a specific function are handled within a single module. Modules can
be run as a stand-alone model, when linked to a main driver program.

3.0 A Simple Crop-Soil Water Model Example
A simple model is presented to demonstrate an approach for modular model construction.
The program consists of four main parts: the main program, plant growth module, soil water
balance module and a weather input routine. A listing of the source code can be found in
Appendix A. Although this program is written in the FORTRAN language, the modular
approach described herein could be used with other computer languages as well.

The algorithms used in the plant and soil modules in the example model were intentionally
kept very simple and are useful only to demonstrate the modular approach. The model is not
intended to be used to accurately simulate actual physical conditions.

Page 3

The criteria for generic modular structure developed by Reynolds and Acock (1997) and the
specific guidelines for construction of a module were used in the development of the modules
for the simple crop model which is used as our example. For larger, more complex models, it
may be difficult to decide on how many modules to create. A few relatively large modules,
using the criteria and principles above; would allow separation of these major components so
that each could easily be replaced by other modules similarly structured, with exact matching
of input and output variables. However, some of the modules may be components of larger
system models or they may be made up of smaller modules, each of which could have the
same criteria applied. Thus, the determination of modules is, to some extent, arbitrary.

Figure 1 illustrates the modular format used in the simple CROP model, in which each
module has two or more of the following five components:
1. The ‘initialization’ section is used to input data and initialize variables and is called once

per simulation.
2. The ‘rate calculation’ section computes process rates and rates of change of state

variables based on conditions at the end of the previous day of simulation. This routine is
called once per time step of simulation.

3. The ‘integration’ section updates state variables using the rates previously calculated.
4. The ‘output’ section is called once per day to generate daily output reports.
5. The ‘close’ section is called once at the end of simulation to close output files and

generate summary reports.

The main program (MAIN.FOR) contains up to five calls to each module to accomplish the
various components of processing. The dynamic flow of processing within the program is
regulated with the DYN variable. Each module is called once at the beginning of simulation
with DYN set equal to ‘INITIAL’, resulting in execution of the initialization portion of the
module. During the daily time loop, each module is called three times: once each for rate
calculation (DYN = ‘RATE’), integration calculations (DYN = ‘INTEG’), and for output of
daily computed data (DYN = ‘OUTPUT’). A final call to each module is made to write
summary output files and to close input and output files (DYN = ‘CLOSE’) after the
simulation is complete.

The FORTRAN code used for directing calls to a module from the main program is
presented in Figure 2. Figure 3 lists typical code used to control processing within a module.

In the example model, the main program calls the plant module, weather module and soil
water balance module in turn to perform computations for each of the listed functions. Rate,
integration and output sections are within the time step loop and the soil water and plant
modules are each called three times per time step within this loop. The weather module is
also called from within the time step loop, but only once per day in the rate calculations
section.

The following sections detail the structure and content of the three modules which are
included in this example model, i.e., the plant growth module, the soil water content module
and the weather module.

Page 4

Figure 1. Modular Structure

Plant Module

Initialization

Rate Calculations

Integration

Output

Close

Soil Water Module

Initialization

Rate Calculations

Integration

Output

Close

Weather Module

Initialization

Rate Calculations

Close

Main Program

D
ai

ly
 T

im
e

St
ep

 L
oo

p

Initialization

Rate
Calculations

Integration

Output

Close

Start

End

Page 5

!==
PROGRAM DRIVER

!==

!==
! Initialization Section
!==

CALL MODULE1(arg1, arg2, , ‘INITIAL’)
CALL MODULE2(arg1, arg2, , ‘INITIAL’)
.
.

!==
! Begin Daily Loop
!==
! Rate Calculation Section
!==

CALL MODULE1(arg1, arg2, , ‘RATE’)
CALL MODULE2(arg1, arg2, , ‘RATE’)
.
.

!==
! Integration Section
!==

CALL MODULE1(arg1, arg2, , ‘INTEG’)
CALL MODULE2(arg1, arg2, , ‘INTEG’)
.
.

!==
! Output Section
!==

CALL MODULE1(arg1, arg2, , ‘OUTPUT’)
CALL MODULE2(arg1, arg2, , ‘OUTPUT’)
.
.

!==
! End Daily Loop
!==
! CLOSE Section
!==

CALL MODULE1(arg1, arg2, , ‘CLOSE’)
CALL MODULE2(arg1, arg2, , ‘CLOSE’)
.
.

!==
! End of Program
!==

END DRIVER

Figure 2 – Module Processing within Main Program

Page 6

!==
SUBROUTINE MODULE1(arg1, arg2, arg3, . . ., DYNAMIC)

!==
CHARACTER*10 DYN

!==
! Initialization Section
!==

IF (INDEX(DYN,'INITIAL') .NE. 0) THEN
<Open files>
<Read input data>
<Initialize variables>
<Perform once-only calculations>
.
.

!==
! Rate Calculation Section
!==

ELSEIF (INDEX(DYN,'RATE') .NE. 0) THEN
<Calculate daily rates>
.
.

!==
! Integration Section
!==

ELSEIF (INDEX(DYN,'INTEG') .NE. 0) THEN
<Update state variables>
.
.

!==
! Output Section
!==

ELSEIF (INDEX(DYN,'OUTPUT') .NE. 0) THEN
<Write daily output>
.
.

!==
! Final Section
!==

ELSEIF (INDEX(DYN,'CLOSE') .NE. 0) THEN
<Write summary output>
<Close files>
.
.

!==
! End of Module
!==

ENDIF
!==

RETURN
END SUBROUTINE MODULE1

!==

Figure 3 – FORTRAN Code for Module Structure

Page 7

4.0 Plant growth module (PLANT.FOR)

The plant growth module computes crop growth and development based on daily values of
maximum and minimum temperatures, radiation and the daily value of two soil water stress
factors, SWFAC1 and SWFAC2. This module also simulates leaf area index (LAI), which is
used in the soil water module to compute evapotranspiration.

4.1 Initialization
Input variables, as listed in Table 1, are read from file PLANT.INP. File
PLANT.OUT is opened and a header is written to this output file.

Table 1 – Input data read for plant module
Variable
Name

Definition Units

EMP1 Empirical coefficient for LAI computation, maximum
leaf area expansion per leaf

m2/leaf

EMP2 Empirical coefficient for LAI computation --
fc Fraction of total crop growth partitioned to canopy --
intot Duration of reproductive stage degree-days
lai Leaf area index m2/ m2

Lfmax Maximum number of leaves --
n Leaf number --
nb Empirical coefficient for LAI computation --
p1 Dry matter of leaves removed per plant per unit

development after maximum number of leaves is
reached

g

PD Plant density plants/m2

rm Maximum rate of leaf appearance leaf/day
sla Specific leaf area m2/g
tb Base temperature above which reproductive growth

occurs
°C

w Total plant dry matter weight g/m2

wc Canopy dry matter weight g/m2

wr Root dry matter weight g/m2

4.2 Rate calculations
The plant module calls three subroutines: PTS to calculate the effect of temperature
on daily plant growth rate and rate of leaf number increase; PGS to calculate daily
plant weight increase (g/plant); and LAIS to calculate increase in leaf area index.

In subroutine PTS, the growth rate reduction factor (PT) is calculated every day using
the following equation:

Where TMIN and TMAX are the minimum and maximum daily temperatures,
respectively.

()()22675.025.00025.01 −+−= TMAXTMINPT

Page 8

Subroutine PGS calculates PG, the potential daily total dry matter increase (g/plant):
Where SRAD is the daily solar radiation (MJ/m2) and PD the plant density

(plant/m2). Y1 is obtained by:

where ROWSPC is the row spacing in (cm). The potential plant growth rate (PG) is
limited by soil water stress (deficit or saturation) through SWFAC and temperature
through PT.

The plant cycle is divided in vegetative and reproductive phases. The vegetative
phase continues until the plant reaches a genetically determined maximum leaf
number (Lfmax). During the vegetative phase, leaf number increase (dN) is
calculated based on a maximum rate (rm) and a temperature based limiting factor
(PT).

During reproductive phase, di, the difference between daily mean temperature and a
base temperature (tb), is used to calculate the rate of plant development. Total rate of
development towards maturity is accumulated as int.

Subroutine LAIS is called for both phases to compute the change in leaf area index
(dLAI). During vegetative period, LAI increases as a function of the rate of leaf
number increase. The potential rate is limited by soil water stress (both deficit and
saturation), through SWFAC, and temperature, through PT. Its value is given by:

Where PD is the plant density (plants/m2), EMP1 is the maximum leaf area expansion
per leaf, (0.104 m2/leaf) and a is given by:

Where EMP2 and nb are coefficients in the expolinear equation and N is the
development age of the plant (leaf number).

After plant has reached the maximum number of leaves, LAI starts to decrease as a
function of the daily thermal integral, di. The rate of decrease is given by

Where p1 is the dry matter of leaves removed per plant per unit development after
maximum number of leaves is reached and SLA is the specific leaf area.

In the vegetative phase the assimilates are partitioned between canopy and roots (dwc
and dwr) whereas in the reproductive phase all growth occurs in the grain (dwf). All
whole plant weight increases (dw) are converted to area based values by multiplying
by the plant density value (PD).

a

a
dNEMPPDPTSWFACdLAI

+
⋅⋅⋅⋅⋅=
1

1

()nbNEMPea −⋅= 2

SLApdiPDdLAI ⋅⋅⋅−= 1

()() 1.0201.0768.05.11 PDROWSPCY ⋅⋅⋅−=

()LAIY
PD

SRAD e ⋅−−⋅⋅ 10.11.2

Page 9

4.3 Integration
Changes to leaf area index (dLAI), plant weights (dw, dwc, dwr and dwf) and leaf
number (dN) are integrated into the appropriate state variables (LAI, w, wc, wr, wf
and N) at the beginning of the ‘integration’ section.

When the accumulated value of the rate of development towards maturity (int)
reaches a genetically determined value (intot), the grain is matured and the simulation
is complete.

4.4 Output
Daily output is written to the PLANT.OUT file.

4.5 Close
The PLANT.OUT output file is closed.

5.0 Soil Water Balance Module (SW.FOR)
A single, homogeneous soil layer underlain by a relatively impervious layer is assumed for
our example model. A simple water balance is used to update the soil water content on a
daily basis using computed values of infiltration, evaporation, transpiration and drainage.

The soil characteristics defined are soil water content at wilting point (WPp), field capacity
(FCp) and saturation (STp) all in units of cm3/cm3; soil profile depth (DP in cm), daily
drainage fraction (DRNp), curve number (CN) and initial soil water content (SWC_INIT in
mm).

The soil water module returns two parameters (SWFAC1 and SWFAC2) which express the
effects of drought and excess soil water on crop growth rate. These factors vary from 1.0
(minimum stress) to 0.0 (maximum stress).

In addition to soil characteristics and weather data, this module requires the value of leaf area
index (LAI), which is computed in the plant module, to calculate potential
evapotranspiration.

5.1 Initialization
In the ‘initialization’ portion of the code, input files SOIL.INP and IRRIG.INP and
output file SW.OUT are opened. The required soil input data is read from file
SOIL.INP and the file is closed. These input variables are listed in Table 2. Headers
are written to output file SW.OUT.

Units for the soil parameters are converted from volumetric fractions to mm of water:

WP = DP * WPp * 10.0
FC = DP * FCp * 10.0
ST = DP * STp * 10.0

where WP, FC and ST are the wilting point, field capacity and saturation content in
mm of water, respectively. Other variables are as defined in Table 2.

Page 10

Table 2 – Input data read for soil water balance module
Variable
Name Definition Units
CN Runoff curve number --
DP Depth of soil profile cm
DRNp Daily drainage percentage (fraction of void space) 1/day
FCp Soil water content at field capacity (fraction of void space) cm3/cm3

STp Soil water content saturation (fraction of void space) cm3/cm3

SWC Soil water content in the profile (value read from file
represents initial soil water content) mm

WPp Soil water content at wilting point (fraction of void space) cm3/cm3

Subroutine RUNOFF is called to compute soil storage capacity (S) based on the Soil
Conservation Service runoff curve number method:

S = 254 * (100/CN - 1)

Subroutine STRESS is called to calculate the threshold soil water content below
which drought stress will occur (THE). For our model, this is approximated as:

THE = WP + 0.75 * (FC - WP)

Initial stress factors (SWFAC1 and SWFAC2) are then calculated based on initial soil
water content. This is discussed in more detail in Section 5.3.

Cumulative values of rainfall (TRAIN), irrigation (TIRR), soil evaporation (TESA),
plant transpiration (TEPA), runoff (TROF), vertical drainage (TDRN), and infiltration
(TINF) are set to zero for the beginning of the simulation.

5.2 Rate calculations
Irrigation rates are read from file IRRIG.INP. Potential infiltration (POTINF) is the
sum of rainfall and irrigation. Cumulative irrigation and rainfall depths are summed
to TIRR and TRAIN, respectively.

Subroutine DRAINE is called to compute vertical drainage of soil water (DRN in
mm) based on a daily fraction of the soil water content above field capacity:

DRN = (SWC - FC) * DRNp

If potential infiltration (POTINF) is greater than zero, subroutine RUNOFF is called
to compute daily surface water runoff rates (ROF) using the SCS curve number
method.

IF (POTINF .GT. 0.2 * S) THEN
 ROF = ((POTINF - 0.2 * S)**2)/(POTINF + 0.8 * S)
ELSE
 ROF = 0
ENDIF

Infiltration (INF) is the difference between potential infiltration and runoff.

Page 11

Subroutine ETpS calculates the daily potential evapotranspiration rate (ETp) based on
the Priestly-Taylor method. The surface albedo (ALB) is estimated as a weighted
average (based on LAI) of the albedo of the soil (0.1) and crop (0.2).

ALB = 0.1 * EXP(-0.7 * LAI) + 0.2 * (1 - EXP(-0.7 * LAI))

The average temperature during the day (T) and the equilibrium evaporation (EEQ)
are calculated.

Tmed = 0.6 * TMAX + 0.4 * TMIN
EEQ = SRAD * (4.88E-03 - 4.37E-03 * ALB) * (Tmed + 29)

The equilibrium evaporation rate is adjusted by a coefficient (f) resulting in the final
value of ETp.

Next, the potential soil evaporation (ESp) and plant transpiration (EPp) rates are
calculated using the same weighting coefficient used for albedo:

ESp = ETp * EXP(-0.7 * LAI)
EPp = ETp * (1 - EXP(-0.7 * LAI))

Subroutine ESaS calculates the actual daily soil evaporation rate (ESa) based on
current soil water availability. No evaporation occurs if the soil water content is less
than the wilting point, and the potential evaporation is met if soil water content is
greater than field capacity. Between the wilting point and field capacity, the actual
evapotranspiration varies linearly between 0.0 and the potential evapotranspiration
rate.

IF (SWC .LT. WP) THEN
 a = 0
ELSEIF (SWC .GT. FC) THEN
 a = 1
ELSE
 a = (SWC - WP)/(FC - WP)
ENDIF

ESa = ESp * a

The potential plant transpiration rate (EPp) is reduced by the minimum soil water
stress factor (SWFAC1 or SWFAC2) to obtain the actual plant transpiration rate
(EPa).

5.3 Integration
The integration portion of the soil water balance module updates the value of the soil
water content based on the computed values of infiltration (INF), soil evaporation
(ESa), plant transpiration (EPa), and vertical drainage (DRN):

SWC = SWC + (INF - ESa - EPa - DRN)

The computed value is limited to a maximum of the saturation content (ST) and a
minimum of zero. If the computed soil water content exceeds saturation, runoff rates

Page 12

and soil water content are adjusted. An additional adjustment factor (SWC_ADJ) is
introduced if the computed soil water content is less than zero.

Cumulative infiltration, evaporation, transpiration, drainage and runoff are then
updated.

Subroutine STRESS is called to compute soil water stress factors based on the
updated soil water content values. The drought stress factor (SWFAC1) is 1.0
(minimum stress) if the soil water content (SWC) is greater than the threshold value
computed in the ‘initialization’ section (THE). Below the wilting point, maximum
stress occurs (SWFAC1 = 0.0). Between these ranges, the stress factor is linearly
distributed.

IF (SWC .LT. WP) THEN
 SWFAC1 = 0.0
ELSEIF (SWC .GT. THE) THEN
 SWFAC1 = 1.0
ELSE
 SWFAC1 = (SWC - WP) / (THE - WP)
 SWFAC1 = MAX(MIN(SWFAC1, 1.0), 0.0)
ENDIF

The thickness of the water table measured from the bottom of the soil profile
(WTABLE in mm) is calculated using the excess water available after field capacity
is met. The depth to the water table (DWT in mm) is then computed.

WTABLE = (SWC - FC) / (ST - FC) * DP * 10.
DWT = DP * 10. - WTABLE

Minimum excess soil water stress (SWFAC2 = 1.0) occurs when the water table
thickness is zero. Maximum stress (SWFAC2 = 0.0) occurs when the depth to the
water table (DWT) is greater than 250 mm (STRESS_DEPTH = 250 mm). The
excess water stress factor is linearly interpolated between these water table
conditions.

IF (DWT .GE. STRESS_DEPTH) THEN
 SWFAC2 = 1.0
ELSE
 SWFAC2 = DWT / STRESS_DEPTH
ENDIF

5.4 Output
Daily values are written to output file SW.OUT.

5.5 Close
At the end of simulation, Subroutine WBAL is called to check that the seasonal water
balance is zero, i.e., that changes in soil water content are equal to cumulative inflows
and outflows. A water balance report is written (WBAL.OUT).

Files SW.OUT and IRRIG.INP are closed.

Page 13

6.0 Weather module (WEATHR.FOR)

The weather module is called three times from the main program for initialization, rate
calculations and to close files. Upon initialization, the weather file is opened. In the rate
calculations section, weather values are read into the model on a daily basis from file
WEATHER.INP. Table 3 lists the weather input data read. The close section is invoked to
close the weather input file.

Table 3 – Input data read for weather module
Variable Name Definition Units
DATE Julian date in YYDDD format --
PAR Daily photosynthetically active radiation mol[photon]/m2-day
RAIN Daily rainfall mm
SRAD Daily solar radiation MJ/m2
TMAX Daily maximum temperature °C
TMIN Daily minimum temperature °C

7.0 References
Acock B., and Reynolds J.F., 1989. The rationale for adopting a modular generic structure

for crop simulators. Acta Horticulturae 248:391-396.

Kenig A., and J.W.Jones, 1997. Model structure for dynamic crop-greenhouse simulations.
In: Seginer I., J.W. Jones, P. Gutman, and C.E. Vallejos (eds), Optimal environmental
control for indeterminate greenhouse crops. Final Report, BARD Research Project
IS-1995-91RC, Agricultural Engineering Department, Technion, Haifa, Israel. Chap.
II-4.

Kraalingen, D.W.G. van, 1995. The FSE system for crop simulation, version 2.1.
Quantitative Approaches in Systems Analysis Report no. 1. DLO Research Institute
for Agrobiology and Soil Fertility, Production Ecology, Wageningen.

Reynolds, J.F. and B. Acock. 1997. Modularity and genericness in plant and ecosystem
models. Ecological Modeling 94: 7-16.

