Volume 2

DSSAT version 3

Editors:

Gordon Y. Tsuji Goro Uehara Sharon Balas

International Benchmark Sites Network for Agrotechnology Transfer University of Hawaii, Honolulu, Hawaii IBSNAT, The International Benchmark Sites Network for Agrotechnology Transfer, is

a network consisting of the contractor (University of Hawaii), its subcontractors and many global collaborators. Together they have created a network of national, regional and international agricultural research for the transfer of agrotechnology among global partners in both developed and lesser developed countries.

From 1982 to 1987, IBSNAT was a program of the U.S. Agency for International Development under a cost-reimbursement Contract, No. DAN-4054-C-00-2071-00, with the University of Hawaii. From 1987 to 1993, the contract was replaced with a Cooperative Agreement, No. DAN-4054-A-00-7081-00, between the University of Hawaii and USAID.

Correct Citation: G.Y. Tsuji, G. Uehara and S. Balas (eds.). 1994. DSSAT v3. University of Hawaii, Honolulu, Hawaii.

Department of Agronomy and Soil Science College of the Tropical Agriculture and Human Resources University of Hawaii Honolulu, Hawaii 96822

Copyright " University of Hawaii 1994

All reported opinions, conclusions and recommendations are those of the authors (contractors) and not those of the funding agency or the United States government.

LIBRARY OF CONGRESS 94-19296 ISBN 1-886684-02-2 (Volume 2) ISBN 1-886684-00-6 (3 Volume set)

Volume 2-1 Input & Output Files

Volume 2-2 Crop Models

Volume 2-3 Graphing Simulated and Experiment Data

TABLE OF CONTENTS

Chapter One. Introduction Chapter Two. File Structure	3 5
File Annotation	5
File Naming Conventions	5
Missing Data	8
Chapter Three. Inputs	9
Experiment List File	9
Experiment Details File	13
Examples of FILEX for Various Experiments	28
Weather Data File	41
Soil Data File	44
Genotype	48
Chapter Four. Outputs	49
Chapter Five. Experiment Performance Data Files	73
Chapter Six. Discussion	75
References	77
Appendix A. Weather List and Soil Profile List Files	79
Weather List File	79
Soil Profile List File	80
Appendix B. Experiment Details Codes	81
Appendix C. Simulated and Field Data Codes	87
Appendix D. Weather Data Codes	93
Figure	
FIGURE 1. OVERVIEW OF INPUT AND OUTPUT FILES USED BY CROP MODELS	6

TABLES

TABLE 1. CROP MODEL INPUT AND OUTPUT FILES	10
TABLE 2. EXPERIMENT LIST FILE (FILEL = "EXP.LST")	12
TABLE 3. EXPERIMENT DETAILS FILE (FILEX)	16
TABLE 4. SIMULATION CONTROLS	24
TABLE 5. EXAMPLE FILEX #1	29
TABLE 6. EXAMPLE FILEX #2	32
TABLE 7. EXAMPLE FILEX #3	35
TABLE 8. EXAMPLE FILEX #4	39
TABLE 9. WEATHER DATA FILE (FILEW)	42
TABLE 10. SOIL DATA FILE (FILES)	45
TABLE 11. EXAMPLE OF THE SIMULATION OVERVIEW FILE (OUTO)	51
TABLE 12. DETAILED SIMULATION SUMMARY OUTPUT FILE (OUTS)	54
TABLE 13. DETAILED SIMULATION GROWTH OUTPUT FILE (OUTG)	58
TABLE 14. DETAILED SIMULATION CARBON BALANCE OUTPUT FILE (OUTC)	61
TABLE 15. Detailed Simulation Water Balance Output File (OUTW)	64
TABLE 16. DETAILED SIMULATION NITROGEN OUTPUT FILE (OUTN)	67
TABLE 17. DETAILED SIMULATION PEST OUTPUT FILE (OUTD)	70
TABLE 18. Example of an Experiment Performance Data Averages File (FILEA)	74
TABLE 19. Example of an Experiment Time-Course Data File (FILET)	74
TABLE 20. Example Weather List File (WTH.LST)	79
TABLE 21. EXAMPLE SOIL PROFILE LIST FILE (SOL.LST)	80

Volume 2-2. Crop Models	95
Acknowledgements	97
PREFACE	99
Chapter One. Introduction	103
Chapter Two. Inputs and Outputs	103
WEATHER	103
Soil	103
CROP MANAGEMENT	104
SIMULATION CONTROL	104
Average Final Field Data	104
TIME-COURSE FIELD DATA	105
Output Files	105
Chapter Three. System Overview	109
FLOW OF INFORMATION	109
Component Structure	110
CROP MODEL EXECUTION	113
Hardware and Software	113
Chapter Four. Creating Input Files	115
Model Input File for Crop Management	116
Experiment List File	120
Chapter Five. Running the Crop Model	121
CHAPTER SIX. DISPLAYING RESULTS	135
General File Manager	135
GRAPHIC DISPLAY	136
Chapter Seven. Management and Sensitivity Analysis Options	141
Simulation Timing	142
CROP	144
Cultivar	145
Weather	147

Soil	150
Initial Conditions	154
PLANTING	156
Harvest	158
Water and Irrigation	160
Nitrogen	163
Phosphorus	167
Residue	168
Pest and Disease	169
CROP PROCESS OPTIONS	170
Output Control	171
Chapter Eight. Problems and Error Messages	173
Chapter Nine. New Crop Model Features	181
NITROGEN BALANCE AND NITROGEN FIXATION (GRAIN LEGUME	
Models Only)	181
Crop Rotations	181
Evapotranspiration Calculations	182
Photosynthesis Calculation Options (Grain Legume Models Only)	182
Carbon Dioxide Effects	182
Climate Change Studies	183
Weather Generators	183
Species, Ecotype and Cultivar Inputs	183
Pest Effects (Grain Legume Models Only)	184
Chapter Ten. Temporary Model Input File	185
References	191
Appendix A. Genetic Coefficients	197
CERES-BARLEY	197
CERES-MAIZE	201
CERES-MILLET	204
CERES-Sorghum	206

CERES-WHEAT	208
CROPGRO-DRY BEAN	212
CROPGRO-PEANUT	215
CROPGRO-Soybean	218
CERES-RICE	221
CROPSIM-Cassava	223
Appendix B. Implementing Pest Damage	225
Pest Damage Methodology	225
Pest Damage Data Files	227
Examples of Pest Data Files for Various Experiments	232
Appendix C. Running Crop Models Under the DSSAT v3 Shell and as Stand-alone Executables	241
RUNNING UNDER THE DSSAT V3 SHELL	241
RUNNING AS STAND-ALONE EXECUTABLES	242
Appendix D. Contacts for Crop Model Information	243
Figures	
Figure 1. Flow of Information for the Current DSSAT v3 Crop Simulation Models	109
Figure 2. DSSAT v3 Crop Simulation Modules and Input/Output File Handling	110
Figure 3. Relationship Between the Temporary Model Input File and the Various Crop Simulation Modules	185
TABLES	
TABLE 1. OLD AND NEW GENERATION CROP SIMULATION MODELS	102
TABLE 2. AVERAGE FINAL FIELD DATA FILE. (FILEA = "UFGA7801.SBA")	105
TABLE 3. TIME-COURSE FIELD DATA FILE. (FILET = "UFGA7801.SBT")	107
TABLE 4. CROP MODEL INPUT FILE. (FILEX = "UFGA7801.SBX")	117
TABLE 5. EXPERIMENT LIST FILE. (FILEL = "EXP.LST")	120
TABLE 6A. CROP MODEL OUTPUT OVERVIEW FILE FOR CERES-MAIZE.(OUTO = "OVERVIEW.OUT")	129

Table 6B .	CROP MODEL OUTPUT OVERVIEW FILE FOR CROPGRO- SOYBEAN. (OUTO = "OVERVIEW.OUT")	132
TABLE 7. I	MPORTANT ERROR MESSAGES	175
TABLE 8. E	EXAMPLE OF A TEMPORARY CROP MODEL INPUT FILE, USING TILE FORMAT = "I" = ("IBSNAT30.INP")	188
	Genetic Coefficients File for CERES-Barley. BACER940.CUL)	199
Table 10.	Genetic Coefficients File for CERES-MAIZE. (MZCER940.CUL)	202
Table 11.	GENETIC COEFFICIENTS FILE FOR CERES-MILLET. (MICER940.CUL)	205
Table 12.	Genetic Coefficients File for CERES-Sorghum. (SGCER940.CUL)	207
TABLE 13.	GENETIC COEFFICIENTS FILE FOR CERES-WHEAT. (WHCER940.CUL)	209
TABLE 14.	Genetic Coefficients File for CROPGRO-Dry Bean. (BNGRO940.CUL)	214
TABLE 15.	Genetic Coefficients File for CROPGRO-Peanut. (PNGRO940.CUL)	217
TABLE 16.	Genetic Coefficients File for CROPGRO-Soybean. (SBGRO940.CUL)	220
TABLE 17.	GENETIC COEFFICIENTS FILE FOR CERES-RICE. (RICER940.CUL)	222
TABLE 18.	GENETIC COEFFICIENTS FILE FOR CROPSIM-CASSAVA. (CSSIM940.CUL)	224
TABLE 19.	Coupling Points and Damage Types Used to Apply Damage in the CROPGRO Crop Models	226
Table 20.	Typical Time Series File (FILET) Containing Examples of Pest Progress Data for Six Pest and Damage Types for Soybean	228
Table 21.	A Typical Pest Coefficient File for Dry Bean . (BNGRO940.PST)	229
TABLE 22.	A Typical Pest Coefficient File for Peanut. (PNGRO940.PST)	230

TABLE 23.	A Typical Pest Coefficient File for Soybean. (SBGRO940.PST)	231
Table 24.	Corn Earworm Population Data Collected from Field Scouting for the Soybean Experiment UFGA7802	232
Table 25.	Time Series File for the Soybean Experiment UFGA7802 Showing 6th Instar Corn Earworm Population Levels (CEW6)	233
TABLE 26.	Simulation Control Section of File UFGA7802.SBX Showing the Disease Simulation Option (DISES) Set to 'Y' to Enable Pest Damage Simulation	234
TABLE 27.	Percent Defoliation Measured at Different Observation Dates for the Soybean Experiment UFQU7902. Defoliation Occurred Due to Velvetbean Caterpillar Population; However, the Population Level Was Unknown	235
Table 28.	Time Series Data File for the Soybean Experiment UFQU7902 Showing Observed Defoliation Levels (PCLA) Resulting from Velvetbean Caterpillar Damage	236
Table 29.	Observed Percent Defoliation and Percent Diseased Leaf Area Collected from Field Scouting for the Peanut Experiment UFGA8602	237
Table 30.	Time Series File for the Peanut Experiment UFGA8602 Showing Observed Levels of Defoliation (PCLA) and Diseased Leaf Area (PDLA) Due to Leafspot Disease	239
TABLE 31.	SUGGESTED ORGANIZATION OF FILES FOR EXECUTION OF CRO MODELS UNDER THE DSSAT v3 SHELL, USING CROPGRO SOYBEAN AS AN EXAMPLE	
Table 32.	Suggested Organization of Files for Stand-alone Execution of Crop Models, Using CROPGRO- Soybean as an Example	242

Volume 2-3. Graphing Simulated and Experiment Data

Chapter One. Introduction	247
Chapter Two. Program Overview	249
Guidelines	249
Menu Structure	250
Hardware	250
Chapter Three. Execute Program	251
Chapter Four. Graph Menu	253
Growth, Water, Nitrogen, Phosphorus, Diseases & Pests, Carbon Options	253
User-selected Variables Option	262
Summary Validation Option	263
Summary Response Option	266
Chapter Five. Options Menu	269
SELECT SIMULATION OPTION	269
COLORS OPTION	272
Directories Option	274
Set Graph Option	275
OUTPUT DEVICE OPTIONS	277
Save Graph Options	279
References	281
TABLES	
TABLE 1. EXAMPLE FILE OF SIMULATED AND OBSERVED DATA USEDTO PLOT THE GRAPH FOR THE GROWTH VARIABLE,"GRAIN DRY WEIGHT" (GWAD).	261
Table 2. Example of a Wingraf GRAPH.INI File.	280

Volume 2-1

INPUT AND OUTPUT FILES

J.W. Jones, L.A. Hunt, G. Hoogenboom, D.C. Godwin, U. Singh, G.Y. Tsuji, N.B. Pickering, P.K. Thornton, W.T. Bowen, K.J. Boote, J.T. Ritchie,

University of Florida, University of Guelph University of Georgia, International Fertilizer Development Center University of Hawaii, Michigan State University International Benchmark Sites Network for Agrotechnology Transfer

Input and Output Files • Input and O

CHAPTER ONE.

For over twenty years scientists and engineers have been developing processoriented simulation models of various crops. Models have been published for most of the world's major food crops as well as for cotton, tobacco, grasses and ornamental crops. These models generally describe the development, growth and yield of a crop on a homogeneous area of soil exposed to certain weather conditions.

The objectives of crop modelers have varied, from understanding mechanisms of plant growth processes, to assisting in management and decision making. Although there are considerable differences in the mathematical structures, the processes included, and the levels of detail and mechanism in each model, there are also some major similarities. Most models are deterministic, operate on daily time steps and require similar input data for soil, weather and management conditions. Models developed for application to conditions other than those in an experiment usually only require weather and soil data that are widely available, and produce outputs that are of general interest to people studying crop management or to those interested in decision making and planning.

Many scientists routinely collect experimental data that can be used to validate and improve existing crop models. These data represent a valuable resource for testing future models. However, to provide easy-to-use data sets for future model testing, and minimize unnecessary manipulation of data, a set of standards is needed for organizing the data files. Crop models which predict crop performance in differing environments are appealing to users from diverse disciplines. Many of these model users need application programs which perform analyses on model outputs. Other users working with spatial data bases may utilize programs which interpolate model inputs between points. Operation of these application programs requires inputs and outputs in a standard form.

In recent years, the International Benchmark Sites Network for Agrotechnology Transfer (IBSNAT) has published documentation for a set of crop model inputs and outputs (IBSNAT, 1986, 1990). This system of files and data formats was used for the models integrated into the Decision Support System for Agrotechnology Transfer (DSSAT v2.1) (IBSNAT, 1989), in which corn, wheat, soybean, and peanut crop models all used the same database software and strategy evaluation program. This system was useful for running and validating the models, for conducting sensitivity analysis, and for evaluating the variability and risks of different management strategies for a range of locations specified by soil and weather data. The attempt to develop and use general files and formats provided a good start and demonstrated the utility of the endeavor. However, the introduction of other crops (such as rice), the introduction of other models of the same crops, and the introduction of other processes into the existing models revealed several deficiencies. Further, the large number of files presented difficulties to many users. Work was initiated, therefore, to develop a more universal set of files.

The work reported by IBSNAT (1986, 1990) provided a basis for many of the files and file structures presented here. In that original work, the inputs and outputs were limited to those that described weather, soil water and nutrient conditions, row and planting geometries and crop management. In the current document, not only have those inputs and outputs been expanded but they are now more flexible, have more variables and contain additional environmental conditions. The inputs and outputs refer to a point in space and do not include watershed or other spatially varying conditions. The present structure, however, is sufficiently flexible to easily allow additions of these and other factors in the future.

A utility program called Convert (see Volume 1-5, Imamura and Tang 1994, of this book) is available in DSSAT v3 to convert DSSAT v2.1 files to the new file structure. Moreover, if a user wishes to create a new experiment data set for DSSAT v3, there is a utility program called XCreate (see Volume 1-4, Imamura 1994, of this book) which creates the new crop management or experiment input file which is referred to as FILEX.

The files and file structures described here are designed to accommodate a diversity of crop models and applications. Their specifications are the basis of the data structures used in DSSAT v3. They have been constructed to facilitate the exchange of data among modelers and other users and can be used as direct input to crop models. They also may function as a medium to generate model-specific input files and keep intact the facility for data set interchange. Considerable thought has been given to designing a system to maximize the flexibility of input configurations. This flexibility has often meant specification of a considerable number of "slots" for inputs. Within this document, examples of minimum configurations of input files for particular applications are highlighted (see the section entitled, "Examples of FILEX for Various Experiments").

CHAPTER TWO.

FILE STRUCTURE

The files are organized into input, output and experiment performance data files (Table 1). A typical organization of these is depicted in Figure 1. The experiment performance files are needed only when simulated results are to be compared with data recorded in a particular experiment. In some cases, however, they could be used as input files to 'reset' some variables during the course of a simulation run. They could also be used to record time series of pests or pest damage to the crop, which could be used as input to crop models. The model output files are organized to allow users to select the information needed for a particular application. Similarly, model inputs are organized to allow some flexibility in their use with specific models. For example, there is a soil nutrient management section that users could eliminate when their crop model does not include a soil fertility component or when fertilizer was applied to eliminate nutrient stresses.

FILE ANNOTATION

Each file should contain file headings, and, if the file is partitioned into sections, section headings. In addition, it is often desirable to add remarks to data contained within a file. These remarks may be header lines indicating the nature of following data items or may be comments on some aspects of the quality or source of the data. Headers may be used by the input components of a model to undertake particular operations, while comment lines would generally be ignored. The following symbols, placed in column 1, indicate the nature of the annotation:

- * file or section heading
- @ header line specifying variables occurring below
- ! comment line.

FILE NAMING CONVENTIONS

A set of file-naming conventions have been adopted to facilitate recognition of different categories of data. The convention has two parts: 1) the file extension which is used to specify the type of file; and 2) the prefix which is used to identify the contents of the file. Following is a list of extensions and prefixes.

Extensions

.WTH	Weather data file
.SOL	Soil profile data file

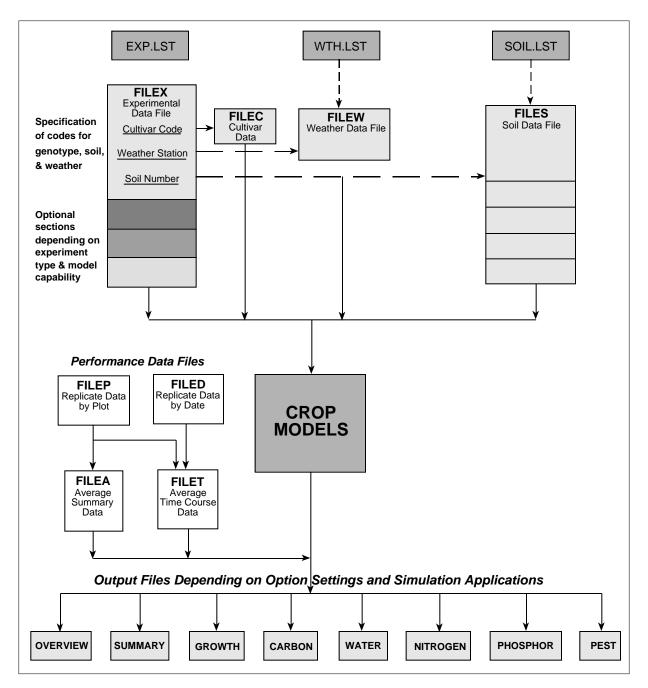


FIGURE 1. OVERVIEW OF INPUT AND OUTPUT FILES USED BY CROP MODELS.

- .CUL Cultivar/variety specific coefficient file
- .ECO Ecotype specific coefficient file
- .SPE Crop (species) specific coefficient file
- .OUT Output file generated by the crop model
- .LST A list file provides a list of either experiments, weather data sets or soil data sets
- .ccX Experiment details file (i.e., FILEX)
- .ccP Observation data (replicate values)
- .ccD Performance data (replicate values)
- .ccA Average values of observation data
- .ccT Time course data (averages)

The 'cc' in the above extensions indicates a crop code (e.g., WH). The current crop codes used are listed below:

U	op coues used are listed below.		
	<u>Code</u>	Crop	
	AL	Alfalfa/Lucerna	
	AR	Aroid	
	BA	Barley	
	BN	Dry bean (Phaseolus bean)	
	BW	Broad leaf weeds	
	CO	Cotton	
	CS	Cassava	
	FA	Fallow	
	GW	Grass-weeds	
	ML	Pearl millet	
	MZ	Maize/Corn	
	PN	Peanut	
	PT	Potato	
	RI	Rice	
	SB	Soybean	
	SC	Sugar cane	
	SG	Sorghum	
	ST	Shrubs/Trees	
	WH	Wheat	

PREFIXES

For most model input files and experiment observation files, the prefix is constructed from an institute code (2 characters), a site code (2 characters), the year of the experiment (2 characters) and an experiment number (2 characters). For example, an experiment conducted by the University of Florida (UF) at Gainesville (GA) in 1988 (88) would yield a file prefix of UFGA8801. The file prefix conventions used for output files and genotype coefficient files are shown in Table 1.

Missing Data

For all input files, the value '-99' is entered when required numeric data are missing or unavailable.

CHAPTER THREE.

Input files are further divided into those dealing with the experiment, weather and soil, and the characteristics of different genotypes (crop and cultivar) (Table 1).

EXPERIMENT LIST FILE

The EXP.LST file (or FILEL) contains a listing of available simulation experiments (Table 2). This file contains no information on individual experiments, but lists all of the experiment files available in the working directory, having one line of information for each experiment. First on this line is the optional experiment list number. There is a blank space and then there is the experiment identifier which specifies the institute code, site code, year of experiment, and experiment number (see the "Prefixes" section above). There is a blank space and then three characters. The first two characters are used for the crop species code (which can specify a group of species as well as one individual species, e.g., WH for Wheat), and the third character defines the file type; the default file type for the IBSNAT models is "X" (see example in Table 2). There is a blank space and then the next field of 60 characters briefly describes the experiment, usually by giving the experiment name. If there are any peculiarities of the experimental conditions at the specific site, these should be added after the experiment name, using a semicolon to separate the two items. Finally, factors included in the experiment, and the number of levels for each factor, should be documented in abbreviated form (e.g., cultivars as CV; irrigation as IR, etc.) and added after the experiment name, each one separated by a semicolon. For each experiment file available for simulation, one line of information, equivalent in content to the one just described, must be placed in the EXP.LST file. Typically, during model execution, this experiment list would appear as a menu from which the user could select an experiment for simulation.

The IBSNAT models are organized to allow users to perform sensitivity analysis, and in such cases, weather data files, soil profiles and other data files (as necessary) are needed and a listing of these, in a form the models can read, must be generated by the user through a utility found in DSSAT v3, so users can select alternate files during a simulation. Examples of a weather list file (WTH.LST) and a soil list file (SOL.LST) used by crop models in DSSAT v3 are given in Appendix A. These list files may be model-specific and are not essential for documenting basic model inputs.

TABLE 1. CROP MODEL INPUT AND OUTPUT FILES.

Internal File Name	Example File Name(s)	External Description	
INPUT FILES			
Experiment			
FILEL	EXP.LST	Listing of all available experiment details files (FILEXs)	
FILEX	UFGA8801.SBX	Experiment details file for a specific ex periment (e.g., soybean at UFGA): treatments, field conditions, crop management and simula- tion controls	
Weather and Soi	1		
FILEW	UFGA8801.WTH	Weather data, daily, for a specific (e.g.,UFGA) station and time period (e.g., for one year)	
FILES	SOIL.SOL	Soil profile data for a group of experimental sites in general (e.g.,SOIL.SOL) or for a specific institute (e.g., UF.SOL)	
Crop and Cultiva	ar		
FILEC	SBGR0940.CUL ^{1,2}	Cultivar/variety coefficients for a particular crop species and model; e.g., soybean for the `GRO' model,version 940 (i.e., released in 1994)	
FILEE	SBGR0940.EC0 ³	Ecotype specific coefficients for a particular crop species and model; e.g., soybean for the 'GRO' model,version 940(i.e., released in 1994)	
FILEG	SBGR0940.SPE ³	Crop (species) specific coefficients for a particular model; e.g., soybean for the `GRO' model, version 940 (i.e., release in 1994)	
Output Files ⁴			
OUTO	OVERVIEW.OUT	Overview of inputs and major crop and soil vari- ables.	
OUTS	SUMMARY.OUT	Summary information: crop and soil input and output variables; one line for each crop cycle or model run.	

OUTG OUTC OUTW OUTN OUTP OUTD	GROWTH.OUT CARBON.OUT WATER.OUT NITROGEN.OUT PHOSPHOR.OUT PEST.OUT	Detailed time-sequence information on: Growth Carbon balance Water balance Nitrogen balance Phosphorus balance Pests, diseases, weed damage/levels
FILEP	UFGA8801.SBP	Performance data (replicate values, arranged by plots) for a soybean experiment. (Used for basic experimental data from which averages and time course data are calculated.)
FILED	UFGA8801.SBD	Performance data (replicate values, arranged by date) for a soybean experiment. (Used for basic experimental data from which averages and time course data are calculated.)
FILEA	UFGA8801.SBA	Average values of performance data for a soybean experiment. (Used for comparison with summary model results.)
FILET	UFGA8801.SBT	Time course data (averages) for a soybean experiment. (Used for graphical comparison of measured and simulated time course re sults.)

- ¹ These names reflect a standard naming convention in which the first two spaces are for the crop code, the next five characters are for the model name, beginning at position 3, and the final one is a file identifier that in general is set to zero.
- ² General names (e.g., SOYBEAN.CUL) have been reserved for those cases where the data requirements are truly model independent.
- ³ These files are used by the 'GRO' models, but other crop models may not need them; thus FILEC is the only required Cultivar file for running all crop models.
- ⁴ The example names for the output files (e.g., GROWTH.OUT) are for temporary files that are rewritten during each simulation run. Output files can be saved, however, and in this case the file names are made up of the usual institute, site, experiment and crop identifiers, with a final letter, G, W, etc., to designate growth, water or other data types. (An example of a saved OVERVIEW output file would be UFGA8801.SBO, where the "O" designates Overview; other examples would be UFGA8801.SBS,G,C,W,N,P,D where the letters designate Summary, Growth, Carbon, Water, Nitrogen, Phosphorus and Pest output files, respectively.)

TABLE 2. EXPERIMENT LIST FILE. (FILEL = "EXP.LST")

STRUCTURE

Variable	Variable Name ¹	Header ²	Fc	orm	at ³
Experiment list number ⁴	EXLTN	#	0	I	2
Experiment identifier, generally made	e up of:				
Institute code (2 characters)					
Site code (2 characters)					
Experiment code (4 characters)	EXPER	FILENAME	1	С	8
File extension (where the 1st two cha	aracters				
are the crop group code(e.g., "WH") ⁵ EXT	EXT	1	С	3
Experiment name	ENAME	ENAME	1	С	60

¹ Abbreviations used as variable names in the IBSNAT models.

- 2 Abbreviations suggested for use in header lines (those designated with '@') within the file.
- ³ Formats are presented as follows: number of leading spaces, variable type (Character = C, Integer = I), variable width.
- ⁴ "Experiment list number" is an optional entry for this line. If it is not used, two blank spaces must be left at the beginning of each line.
- 5 The IBSNAT models use "X" for the third character of the extension.

EXAMPLE

*EXPERIMENT LIST @# FILENAME EXT ENAME..... 1 UFGA7801 SBX BRAGG,IRRIGATED&NON-IRRIGATED;2IR 2 UFGA8101 SBX COBB,IRRIGATED+VEG+REPROD.STRESS;3IR 3 UFGA9101 SBX POTENTIAL YIELD EXAMPLE;2CV;2SI 4 UFGA9102 SBX CLIMATE CHANGE STUDY EXAMPLE;2CV;ESI

EXPERIMENT DETAILS FILE

One main file, referred to as FILEX (Table 3), documents the inputs to the models for each "experiment" to be simulated. Each experiment could be a real one for which there would be corresponding observed field data, or a hypothetical one defined for simulation. Thus, inputs for many real and hypothetical experiments can be stored for documentation and for use at different times. The file heading contains the experiment code and name, the treatment combinations, and details of the experimental conditions (field characteristics, soil analysis data, initial soil water and inorganic nitrogen conditions, seedbed preparation and planting geometries, irrigation and water management, fertilizer management, organic residue applications, chemical applications, tillage operations, environmental modifications, harvest management), and simulation controls. The experiment code uses the same convention as the file naming system to provide information on institute, site, planting year, experiment number, and crop. For example: UFGA8201MZ, is the code for maize experiment 01, planted in 1982 by the institute designated by UF (University of Florida) at site GA (Gainesville). The file can also contain the names of the people supplying the data set and information on the plot sizes, etc., used in the experiment. It may also contain any incidents that occurred during the course of the experiment that may affect the interpretation of the data. These latter items are not normally used by simulations models, but are provided for reference and assistance in interpreting simulation results. Documentation of these sections is included in Table 3, for use when required.

The structure of FILEX has been designed with the goal of maximizing the flexibility of input configurations while preserving the concept of entering only a minimum of inputs to run a simulation. The file can be easily configured to accommodate very different types of simulation runs. To enable this flexibility, the file description provides slots for inputs and descriptive information which may be needed for some types of simulation runs but not for others. FILEX has been configured in such a way that only those data required for individual simulations need be entered.

In order for FILEX to accommodate a wide variety of experimental layouts, a broad definition of what comprises a treatment is necessary. For the purposes of data organization in FILEX, a treatment can be any factor of the experiment which varies. In addition to such things as combinations of fertilizer rates, varieties and irrigation levels, treatments can be different fields or different soils or different soil analyses or different weather. Thus if an experiment compared varieties across locations without water, nutrient and pest limitations, the locations of fields become treatments. This enables one experiment to utilize multiple weather data sets which was not possible when using the IBSNAT v2.1 model inputs and outputs (IBSNAT, 1990).

Most experiments will have more than one treatment. Many experiments will be conducted on only one site with treatments confined to such factors as fertilizer rates, varieties or irrigation treatments. Alternatively, an experiment such as a plant breeding experiment may span several sites where the sites and varieties are treatments. To accommodate these differing possibilities, FILEX has been designed with specific sections dedicated to particular categories of inputs. Only those sections required for the particular simulation need be present in FILEX.

Thus, data for the first treatment of an experiment are entered in the appropriate sections in FILEX. If, however, the experiment has more than one treatment, which is usually the case, then the data which are common to all treatments need not be repeated. This contrasts with the organization of inputs described for previous generations of IBSNAT models (IBSNAT, 1986 and 1990). In this newest version, only those data which are "new" for the treatment need be coded. For example, if an experiment examined the effect of five nitrogen rates, FILEX would contain sections for planting details and initial conditions and a section for fertilizer rate information for the first treatment. For the second treatment, the planting details and initial conditions would not be repeated but a second rate would appear in the fertilizer details section.

The various sections of FILEX are summarized below.

FILE SECTION Experiment details	TYPICAL CONTENTS Experiment name and codes
General	Names of people, addresses; name and location of experiment site(s); plot information
Treatments	Treatment number, name and specification of level codes of the treatment factors
Cultivar	Cultivar level, crop code, cultivar ID and name
Fields	Specification of field level, ID, weather station name, soil, and field description details
Soil Analysis	Set of soil properties used for the simulation of nutrient dynamics, based on field nutrient sam pling, if any

Input and Output Files • Input and

Initial Conditions	Starting conditions for water and nitrogen in the profile. Also used for carryover of root residue from the previous crop, and N symbiosis initializtion details when needed
Planting Details	Planting date, population, seeding depth and row spacing data
Irrigation and Water Management	Irrigation dates, amounts, thresholds and rice flood water depths
Fertilizers	Fertilizer rate, date and type information
Residues	Additions of straw, green manure, animal manure
Chemical Applications	Herbicide and pesticide application data
Environment Modifications	Adjustment factors for weather parameters as used in climate change and constant environ ment studies (e.g., constant daylength, shading, constant temperature, etc.)
Tillage Information	Details of dates, types of tillage operations
Harvest Details	Information on harvest dates, plant components harvested, etc.
Simulation Controls	Specification of simulation options (e.g., starting dates), on/off options for model components (e.g., water, and nitrogen balances), and output options

It should be noted that for any particular simulation, only a few of these sections would be needed. However, the minimum required information for a simulation (that is, when there are no water, nutrient or pest stresses, and when soil water and nitrogen balances are not used) are the Experiment, Cultivar, Treatment, Field, Planting Details and Simulation Controls sections.

TABLE 3. EXPERIMENT DETAILS FILE. (FILEX)

STRUCTURE

SINDEFORE						
Variable	Variable Name ¹	Header ²	Fo	rma	at ³	
Line 1						
*EXP.DETAILS:			0	С	13	
Experiment identifier, made up of:						
Institute code	INSTE			С	2	
Site code	SITEE		-	С	2	
Experiment number/abbreviation	EXPTNO			С		
Crop group code	CG		-	C	2	
Experiment name ⁴	ENAME ⁴		1	С	60	
*general ⁵						
Line 1(People)						
Names of scientists	PEOPLE	PEOPLE	1	С	75	
Line 2 (Address)						
Contact address of principal scientist	ADDRESS	ADDRESS	1	С	75	
Line 3 (Sites)						
Name and location of experimental site	s (s) 6 strr (s) 6	SITE(S)	1	С	75	
Name and rocacion of caperimental pite		BIID(B)	-	C	, 5	
Line 4 (Plot information)						
Gross plot area per rep, m ⁻²	PAREA	PAREA	3	R	6	1
Rows per plot	PRNO	PRNO	1	I	5	
Plot length, m	PLEN	PLEN	1	R	5	1
Plots relative to drains, degrees	PLDR	PLDR	1	I	5	
Plot spacing, cm	PLSP	PLSP	1	I	5	
Plot layout	PLAY	PLAY	1	С	5	
Harvest area, m ⁻²	HAREA	HAREA	1	R	5	1
Harvest row number	HRNO	HRNO	1	Ι	5	
Harvest row length, m	HLEN	HLEN		R	5	1
Harvest method	HARM	HARM	1	С	15	
All other lines (Incidents)	NOTEC	NOTES	1	a	75	
Notes	NOTES	NOTES	T	С	75	
*TREATMENTS						
Treatment number	TRTNO	TN	0	I	2	
Rotation component: number (default=		R	1	I	1	
option (default=		0	1	I	1	
Crop component number (default = 0)	CRPNO	С	1	I	1	

					-
Treatment name	TITLET	TNAME	1	С	25
Cultivar level	LNCU	CU	1	I	2
Field level	LNFLD	FL	1	I	2
Soil analysis level	LNSA	SA	1	I	2
Initial conditions level	LNIC	IC	1	I	2
Planting level	LNPLT	MP	1	I	2
Irrigation level	LNIR	MI	1	I	2
Fertilizer level	LNFER	MF	1	I	2
Residue level	LNRES	MR	1	I	2
Chemical applications level	LNCHE	MC	1	I	2
Tillage and rotations level	LNTIL	MT	1	I	2
Environmental modifications level	LNENV	ME	1	I	2
Harvest level	LNHAR	MH	1	I	2
Simulation control level	LNSIM	SM	1	I	2
*CULTIVARS			6	_	0
Cultivar level	LNCU	CU	0	I	2
Crop code	CG	CR	1	С	2
Cultivar identifier					_
(Institute code + Number)	VARNO	INGENO	1	С	6
Cultivar name	CNAME	CNAME	1	С	16
*FIELDS					
Field level	LNFLD	FL	0	I	2
Field ID (Institute + Site + Field)	FLDNAM	ID FIELD	1	C	8
Weather station code (Institute+Site)	WSTA	WSTA	1	C	8
Slope and aspect, degrees from horizon		10111	-	C	0
tal plus direction (W, NW, etc.)	SLOPE	FLSA	1	С	5
Obstruction to sun, degrees	FLOB	FLOB	1	R	5 (
Drainage type, code ⁷	DFDRN	FLDT	1	C	5
Drain depth, cm	FLDD	FLDD	1	R	5 (
Drain spacing, m	SFDRN	FLDS	1	R	5 (
Surface stones(Abundance, %+Size, S, M, L)		FLST	1	C	5
Soil texture ⁷	SLTX	SLTX	1	C	5
Soil depth, cm	SLDP	SLDP	1	R	5 (
Soil ID (Institute+Site+Year+Soil)	SLNO		1	к С	10
Soli iD (Institute+Site+Year+Soli)	STINO	ID_SOIL	T	C	ΤŪ
*SOIL ANALYSIS					
Line 1					
Soil analysis level	LNSA	SA	0	I	2
Analysis date, year + days from Jan. 1		SADAT	1	I	5
pH in buffer determination method,					
code ⁷	SMHB	SMHB	1	С	5
Phosphorus determination method,			-	-	-
code ⁷	SMPX	SMPX	1	С	5
Potassium determination method, code ⁷	SMKE	SMKE	1	-	
	~	~	-	0	5

All other lines (L = Layer number)						
Soil analysis level	LNSA	SA	0	Ι	2	
Depth, base of layer, cm	SABL(L)	SABL	1	R	5	0
Bulk density, moist, g cm ⁻³	SADM(L)	SADM	1	R	5	1
Organic carbon, g kg ⁻¹	SAOC(L)	SAOC	1	R	5	2
Total nitrogen, g kg ^{-⊥}	SANI(L)	SANI	1	R	5	2
pH in water	SAPHW(L)	SAHW	1	R	5	1
pH in buffer	SAPHB(L)	SAHB	1	R	5	1
Phosphorus, extractable, mg kg ⁻¹	SAPX(L)	SAEX	1	R	5	1
Potassium, exchangeable, cmol kg ⁻¹	SAKE(L)	SAKE	1	R	5	1
*INITIAL CONDITIONS						
Line 1						
Initial conditions level	LNIC	IC	0	I	2	
Previous crop code	PRCROP	PCR	1	С	5	
Initial conditions measurement	IDAYIC	ICDAT	1	I	5	
date, year + days						
Root weight from previous crop, kg ha ⁻¹	WRESR	ICRT	1	R	5	0
Nodule weight from previous crop, kg ha	WRESND	ICND	1	R	5	0
Rhizobia number, 0 to 1 scale						
(default = 1)	EFINOC	ICRN	1	R	5	2
Rhizobia effectiveness, 0 to 1 scale						
(default = 1)	EFNFIX	ICRE	1	R	5	2
All other lines (L = Layer number)						
	INTC	тс	0	т	2	
Initial conditions level	LNIC DLAYRI(L)	IC ICBL	0 1	I R	25	0
Initial conditions level Depth, base of layer, cm	DLAYRI(L)	ICBL	1	R	5	0 3
Initial conditions level Depth, base of layer, cm Water, cm ³ cm ⁻³ x 100 volume percent	DLAYRI(L) SWINIT(L)	ICBL SH20	1 1	R R	5 5	0 3
Initial conditions level Depth, base of layer, cm Water, cm ³ cm ⁻³ x 100 volume percent Ammonium, KCl, g elemental N Mg^{-1} soil	DLAYRI(L) SWINIT(L) INH4(L)	ICBL SH20 SNH4	1 1 1	R R R	5 5 5	3
Initial conditions level Depth, base of layer, cm Water, cm ³ cm ⁻³ x 100 volume percent	DLAYRI(L) SWINIT(L)	ICBL SH20	1 1	R R	5 5	
Initial conditions level Depth, base of layer, cm Water, cm ³ cm ⁻³ x 100 volume percent Ammonium, KCl, g elemental N Mg ⁻¹ soil Nitrate, KCl, g elemental N Mg ⁻¹ soil *PLANTING DETAILS	DLAYRI(L) SWINIT(L) INH4(L) INO3(L)	ICBL SH20 SNH4 SNO3	1 1 1	R R R	5 5 5 5	3
Initial conditions level Depth, base of layer, cm Water, cm ³ cm ⁻³ x 100 volume percent Ammonium, KCl, g elemental N Mg ⁻¹ soil Nitrate, KCl, g elemental N Mg ⁻¹ soil *PLANTING DETAILS Planting level number	DLAYRI(L) SWINIT(L) INH4(L) INO3(L) LNPLT	ICBL SH20 SNH4 SNO3 MP	1 1 1 1	R R R I	5 5 5 2	3
Initial conditions level Depth, base of layer, cm Water, cm ³ cm ⁻³ x 100 volume percent Ammonium, KCl, g elemental N Mg ⁻¹ soil Nitrate, KCl, g elemental N Mg ⁻¹ soil *PLANTING DETAILS Planting level number Planting date, year + days from Jan. 1	DLAYRI(L) SWINIT(L) INH4(L) INO3(L) LNPLT YRPLT	ICBL SH20 SNH4 SNO3 MP PDATE	1 1 1 1 0 1	R R R I I	5 5 5 2 5	3
Initial conditions level Depth, base of layer, cm Water, cm ³ cm ⁻³ x 100 volume percent Ammonium, KCl, g elemental N Mg ⁻¹ soil Nitrate, KCl, g elemental N Mg ⁻¹ soil *PLANTING DETAILS Planting level number Planting date, year + days from Jan. 1 Emergence date, earliest treatment	DLAYRI(L) SWINIT(L) INH4(L) INO3(L) LNPLT	ICBL SH20 SNH4 SNO3 MP	1 1 1 1	R R R I	5 5 5 2	3
Initial conditions level Depth, base of layer, cm Water, cm ³ cm ⁻³ x 100 volume percent Ammonium, KCl, g elemental N Mg ⁻¹ soil Nitrate, KCl, g elemental N Mg ⁻¹ soil *PLANTING DETAILS Planting level number Planting date, year + days from Jan. 1 Emergence date, earliest treatment Plant population at seeding,	DLAYRI(L) SWINIT(L) INH4(L) INO3(L) LNPLT YRPLT IEMRG	ICBL SH20 SNH4 SNO3 MP PDATE EDATE	1 1 1 1 0 1	R R R I I I	5 5 5 2 5 5	3
Initial conditions level Depth, base of layer, cm Water, cm ³ cm ⁻³ x 100 volume percent Ammonium, KCl, g elemental N Mg ⁻¹ soil Nitrate, KCl, g elemental N Mg ⁻¹ soil *PLANTING DETAILS Planting level number Planting date, year + days from Jan. 1 Emergence date, earliest treatment Plant population at seeding, plants m ⁻²	DLAYRI(L) SWINIT(L) INH4(L) INO3(L) LNPLT YRPLT	ICBL SH20 SNH4 SNO3 MP PDATE	1 1 1 1 0 1	R R R I I	5 5 5 2 5 5	3
<pre>Initial conditions level Depth, base of layer, cm Water, cm³ cm⁻³ x 100 volume percent Ammonium, KCl, g elemental N Mg⁻¹ soil Nitrate, KCl, g elemental N Mg⁻¹ soil *PLANTING DETAILS Planting level number Planting date, year + days from Jan. 1 Emergence date, earliest treatment Plant population at seeding, plants m⁻² Plant population at emergence,</pre>	DLAYRI(L) SWINIT(L) INH4(L) INO3(L) LNPLT YRPLT IEMRG PLANTS	ICBL SH20 SNH4 SNO3 MP PDATE EDATE PPOP	1 1 1 1 1 1 1 1	R R R I I R	5 5 5 5 5 5 5 5	3 1
<pre>Initial conditions level Depth, base of layer, cm Water, cm³ cm⁻³ x 100 volume percent Ammonium, KCl, g elemental N Mg⁻¹ soil Nitrate, KCl, g elemental N Mg⁻¹ soil *PLANTING DETAILS Planting level number Planting date, year + days from Jan. 1 Emergence date, earliest treatment Plant population at seeding, plants m⁻² Plant population at emergence, plants m⁻²</pre>	DLAYRI(L) SWINIT(L) INH4(L) INO3(L) LNPLT YRPLT IEMRG	ICBL SH20 SNH4 SNO3 MP PDATE EDATE	1 1 1 1 1 1 1 1	R R R I I I	5 5 5 5 5 5 5 5	3
<pre>Initial conditions level Depth, base of layer, cm Water, cm³ cm⁻³ x 100 volume percent Ammonium, KCl, g elemental N Mg⁻¹ soil Nitrate, KCl, g elemental N Mg⁻¹ soil *PLANTING DETAILS Planting level number Planting date, year + days from Jan. 1 Emergence date, earliest treatment Plant population at seeding, plants m⁻² Plant population at emergence, plants m⁻² Planting method, transplant (T),</pre>	DLAYRI(L) SWINIT(L) INH4(L) INO3(L) LNPLT YRPLT IEMRG PLANTS	ICBL SH20 SNH4 SNO3 MP PDATE EDATE PPOP	1 1 1 1 1 1 1 1	R R R I I R	5 5 5 5 5 5 5 5	3 1
<pre>Initial conditions level Depth, base of layer, cm Water, cm³ cm⁻³ x 100 volume percent Ammonium, KCl, g elemental N Mg⁻¹ soil Nitrate, KCl, g elemental N Mg⁻¹ soil *PLANTING DETAILS Planting level number Planting date, year + days from Jan. 1 Emergence date, earliest treatment Plant population at seeding, plants m⁻² Plant population at emergence, plants m⁻² Planting method, transplant (T), seed (S), pregerminated seed (P)</pre>	DLAYRI(L) SWINIT(L) INH4(L) INO3(L) LNPLT YRPLT IEMRG PLANTS PLTPOP	ICBL SH20 SNH4 SNO3 MP PDATE EDATE PDOP PPOE	1 1 1 1 1 1 1 1	R R R I I R R	5 5 5 5 5 5 5 5 5	3 1
<pre>Initial conditions level Depth, base of layer, cm Water, cm³ cm⁻³ x 100 volume percent Ammonium, KCl, g elemental N Mg⁻¹ soil Nitrate, KCl, g elemental N Mg⁻¹ soil *PLANTING DETAILS Planting level number Planting date, year + days from Jan. 1 Emergence date, earliest treatment Plant population at seeding, plants m⁻² Plant population at emergence, plants m⁻² Planting method, transplant (T), seed (S), pregerminated seed (P) or nursery (N)</pre>	DLAYRI(L) SWINIT(L) INH4(L) INO3(L) LNPLT YRPLT IEMRG PLANTS	ICBL SH20 SNH4 SNO3 MP PDATE EDATE PPOP	1 1 1 1 1 1 1 1	R R R I I R	5 5 5 5 5 5 5 5 5	3 1
<pre>Initial conditions level Depth, base of layer, cm Water, cm³ cm⁻³ x 100 volume percent Ammonium, KCl, g elemental N Mg⁻¹ soil Nitrate, KCl, g elemental N Mg⁻¹ soil *PLANTING DETAILS Planting level number Planting date, year + days from Jan. 1 Emergence date, earliest treatment Plant population at seeding, plants m⁻² Plant population at emergence, plants m⁻² Planting method, transplant (T), seed (S), pregerminated seed (P) or nursery (N) Planting distribution, row (R),</pre>	DLAYRI(L) SWINIT(L) INH4(L) INO3(L) LNPLT YRPLT IEMRG PLANTS PLTPOP PLME	ICBL SH20 SNH4 SNO3 MP PDATE EDATE PPOP PPOE PLME	1 1 1 1 1 1 1 5	R R R I I I R R C	5 5 5 5 5 5 5 1	3 1
<pre>Initial conditions level Depth, base of layer, cm Water, cm³ cm⁻³ x 100 volume percent Ammonium, KCl, g elemental N Mg⁻¹ soil Nitrate, KCl, g elemental N Mg⁻¹ soil *PLANTING DETAILS Planting level number Planting date, year + days from Jan. 1 Emergence date, earliest treatment Plant population at seeding, plants m⁻² Plant population at emergence, plants m⁻² Planting method, transplant (T), seed (S), pregerminated seed (P) or nursery (N) Planting distribution, row (R), broadcast (B) or hill (H)</pre>	DLAYRI(L) SWINIT(L) INH4(L) INO3(L) LNPLT YRPLT IEMRG PLANTS PLTPOP PLME PLDS	ICBL SH20 SNH4 SNO3 MP PDATE EDATE PPOP PPOE PLME PLME PLDS	1 1 1 1 1 1 1 1 5 5	R R R I I I R R C	5 5 5 5 5 5 5 1	3 1 1 1
<pre>Initial conditions level Depth, base of layer, cm Water, cm³ cm⁻³ x 100 volume percent Ammonium, KCl, g elemental N Mg⁻¹ soil Nitrate, KCl, g elemental N Mg⁻¹ soil *PLANTING DETAILS Planting level number Planting date, year + days from Jan. 1 Emergence date, earliest treatment Plant population at seeding, plants m⁻² Plant population at emergence, plants m⁻² Planting method, transplant (T), seed (S), pregerminated seed (P) or nursery (N) Planting distribution, row (R), broadcast (B) or hill (H) Row spacing, cm</pre>	DLAYRI(L) SWINIT(L) INH4(L) INO3(L) LNPLT YRPLT IEMRG PLANTS PLTPOP PLME PLME PLDS ROWSPC	ICBL SH20 SNH4 SNO3 MP PDATE EDATE PDOP PPOP PPOE PLME PLMS PLRS	1 1 1 1 1 1 1 1 5 5 1	R R R I I I R R C R	5 5 5 5 5 5 5 5 1 5 5	3 1 1 1 1
<pre>Initial conditions level Depth, base of layer, cm Water, cm³ cm⁻³ x 100 volume percent Ammonium, KCl, g elemental N Mg⁻¹ soil Nitrate, KCl, g elemental N Mg⁻¹ soil *PLANTING DETAILS Planting level number Planting date, year + days from Jan. 1 Emergence date, earliest treatment Plant population at seeding, plants m⁻² Plant population at emergence, plants m⁻² Planting method, transplant (T), seed (S), pregerminated seed (P) or nursery (N) Planting distribution, row (R), broadcast (B) or hill (H)</pre>	DLAYRI(L) SWINIT(L) INH4(L) INO3(L) LNPLT YRPLT IEMRG PLANTS PLTPOP PLME PLDS	ICBL SH20 SNH4 SNO3 MP PDATE EDATE PPOP PPOE PLME PLME PLDS	1 1 1 1 1 1 1 1 5 5	R R R I I I R R C C R R	5 5 5 5 5 5 5 1	3 1 1 1

Planting material dry weight, kg ha $^{-1}$	SDWTPL	PLWT	1	R	5	0
Transplant age, days	SDAGE	PAGE	1	R	5	0
Temp. of transplant environment, °C	ATEMP	PENV	1	R	5	1
Plants per hill (if appropriate)	PLPH	PLPH	1	R	5	1
*IRRIGATION AND WATER MANAGEMENT						
Line 1						
Irrigation level	LNIR	MI	0	I	2	
Irrigation application efficiency,						
fraction	EFFIRX	EFIR	1	R	5	2
Management depth for automatic						
application, cm	DSOILX	IDEP	1	R	5	0
Threshold for automatic appl., % of max.						
available	THETCX	ITHR	1	R	5	0
End point for automatic appl., % of max.			_		-	•
available	IEPTX	IEPT	1	R	5	0
End of applications, growth stage	IOFFX	IOFF	1	C	5	Ũ
Method for automatic applications, code ⁵	IAMEX	IAME	1	C	5	
Amount per irrigation if fixed, mm	AIRAMX	IAMT	1	R	5	0
			-		0	Ũ
All other lines (J = Irrigation applicat:	ion number)					
Irrigation level	LNIR	MI	0	I	2	
Irrigation date, year + day or days				_	_	
from planting	IDLAPL(J)	IDATE	1	Ι	5	
Irrigation operation, code ⁷	IRRCOD(J)	IROP	1	C	5	
Irrigation amount, depth of water/water	(0)		-	Ũ	0	
table, bund height, or percolation						
rate, mm or mm day $^{-1}$	AMT(J)	IRVAL	1	R	5	0
face, han of han day						
*FERTILIZERS (INORGANIC) (J = Fertilizer	application	number)				
Fertilizer application level	LNFERT	MF	0	I	2	
Fertilization date, year + day or days			Ũ	-	-	
from planting	FDAY(J)	FDATE	1	Ι	5	
Fertilizer material, code ⁷	IFTYPE(J)	FMCD	1	C	5	
Fertilizer application/placement, code ⁷	FERCOD(J)	FACD	1	C		
Fertilizer incorporation/application	1 11(00) (0)	11102	-	C	5	
depth, cm	DFERT(J)	FDEP	1	R	5	0
N in applied fertilizer, kg ha ⁻¹	ANFER(J)	FAMN	1	R	5	0
P in applied fertilizer, kg ha ⁻¹	APFER(J)	FAMP	1	R	5	0
K in applied fertilizer, kg ha ⁻¹	AKFER(J)	FAMK	1	R	5	0
Ca in applied fertilizer, kg ha ⁻¹	ACFER(J)	FAMC	1	R	5	0
Other elements in applied fertilizer,		11110	-	17	5	0
kg ha ⁻¹	AOFER(J)	FAMO	1	R	5	0
Other element code, e.g.,. MG	FOCOD(J)	FOCD	1	C	5	U
outer exemente code, e.g.,. MG			т	C	J	

*RESIDUES AND OTHER ORGANIC MATERIALS (J =		nlication ni	imhe	r)		
Residue management level	LNRES	MR	0	I I	2	
-	RESDAY(J)	RDATE	1	I	5	
	RESCOD(J)	RCOD	1	Ċ	5	
1	RESIDUE(J)	RAMT	1	R	5	0
_	RESN(J)	RESN	1	R	5	2
	RESP(J)	RESP	1	R	5	2
	RESK(J)	RESK	1	R	5	2
	RINP(J)	RINP	1	R	5	2
	DEPRES(J)		1	R	5	0
Residue incorporation deptil, cm	DEPRES(U)	RDEP	T	к	5	0
*CHEMICAL APPLICATIONS (J = Chemical appl:						
	LNCHE	MC	0	Ι	2	
Application date, year + day or days from						
	CDATE(J)	CDATE	1	Ι	5	
	CHCOD(J)	CHCOD	1	С	5	
	CHAMT(J)	CHAMT	1	R	5	2
	CHMET(J)	CHME	1	С	5	
Chemical application depth, cm	CHDEP(J)	CHDEP	1	С	5	
Chemical targets	CHT	CHT	1	С	5	
*TILLAGE (J = Tillage application number)						
	TL	TL	0	I	2	
5	TDATE(J)	TDATE	1	Ι	5	
7	TIMPL(J)	TIMPL	1	C	5	
	TDEP(J)	TDEP	1	R	5	0
*ENVIRONMENT MODIFICATIONS (J = Environmen	nt modificat	ion number)				
	LNENV	ME	0	I	2	
Modification date, year + day or days		1111	0	-	2	
	WMDATE(J)	ODATE	1	I	5	
	DAYFAC(J)	E	1	C	1	
	DAYADJ(J)	DAY	0	R	4	1
	RADFAC(J)	E	1	C	1	1
0 1	RADADJ(J)	RAD	0	R	⊥ 4	1
Temperature (maximum) adjustment factor	KADADU (U)	RAD	0	к	4	Ŧ
(A,S,M,R)	TXFAC(J)	Е	1	С	1	
	TXADJ(J)	MAX		R		1
Temperature (minimum) adjustment factor	- (-)					
(A,S,M,R)	TMFAC(J)	E	1	С	1	
Temperature (minimum) adjustment, °C	TMADJ(J)	MIN	0	R	4	1
Precipitation adjustment factor (A,S,M,R)	PRCFAC(J)	E	1	С	1	
Precipitation adjustment, mm	PRCADJ(J)	RAIN	0	R	4	1
CO ₂ adjustment code (A,S,M,R)	CO2FAC(J)	E	1	С	1	
	CO2ADJ(J)	CO2	0	R	4	0
	DPTFAC(J)	Е	1	С	1	
			0	R	4	1

Wind adjustment factor (A,S,M,R) Wind adjustment, km day ⁻¹ N.B. A = add, S = subtract, M = multiply	WNDFAC(J) WNDADJ(J) , R = replace	E WIND	1 0	C R	1 4	1
*HARVEST DETAILS (J = Harvest number)						
Harvest level	LNHAR	HL	0	I	2	
Harvest date, year + day or days from						
planting	HDATE(J)	HDATE	1	Ι	5	
Harvest stage	HSTG(J)	HSTG	1	С	5	
Harvest component, code ⁷	HCOM(J)	HCOM	1	С	5	
Harvest size group, code ⁷	HSIZ(J)	HSIZ	1	С	5	
Harvest percentage, %	HPC(J)	HPC	1	R	5	0

¹ Abbreviations used as variable names in the IBSNAT models.

- 2 Abbreviations suggested for use in header lines (those designated with '@') within the file.
- ³ Formats are presented as follows: number of leading spaces, variable type (Character = C, Real = R, Integer = I), variable width, and (if real) number of decimals.
- ⁴ It is suggested that Experiment Name be composed of a short name, followed by a blank space, summary of treatment factors, followed by a blank space, and end with a local abbreviation for the experiment in parenthesis. This information will then be available for searching and organizing experiments, using the list managers described in Volume 1-3 (Hunt et al. 1994) of this book.
- $^5\,$ Each section in the actual file needs a heading of this type.
- ⁶ It is suggested that the SITE information on data line 3 be composed of a short site name, followed by a blank space, then latitude, longitude, elevation (in meters above sea level, and climate zone, each separated by a semi-colon. For example:

GAINESVILLE, FL 29.63N; 82.37W; 40M; SEUSA

 $^7\,$ For a complete listing of these codes, see Appendix B.

TREATMENT LEVEL INDICATORS

A system of pointers or treatment level indicators reduces the amount of data contained in FILEX. These level indicators are used to specify the combinations of inputs for each treatment. They flag the models as to which sections of FILEX are needed for the simulation. Within each flagged section, the indicators point to the data relevant to the chosen treatment.

The level indicators in the order in which they appear in FILEX, together with their abbreviations are shown below:

Cultivar Level	CU
Field Level	FL
Soil Analysis Level	SA
Initial Conditions Level	IC
Planting Level	MP
Irrigation Level	MI
Fertilizer Level	MF
Residue Level	MR
Chemical applications Level	MC
Tillage And Rotations Level	MT
Environmental Modification Level	ME
Harvest Level	MH
Simulation Control Level	SM

As an example, consider an experiment with 3 N rates and 2 irrigation management levels. In this experiment, the cultivar, field details, initial conditions and residue management remain the same for all treatments. Assuming planting details and required simulation options are also the same for both treatments and there is no consideration given to chemical, tillage and environmental modification, then the treatment section of FILEX and the corresponding level indicators would appear as below. Note how the level indicators for water and fertilizer vary with treatments.

*TR	EAT	MEN	TS																	
@N	R	0	С	TN	AMI	Ξ		CU	FL	SA	IC	MP	ΜI	MF	MR	MC	ΜT	ME	MH	SM
01	1	1	0	0	Ν	LOW	WATER	1	1	0	1	1	1	1	1	0	0	0	0	1
02	1	1	0	30	Ν	LOW	WATER	1	1	0	1	1	1	2	1	0	0	0	0	1
03	1	1	0	90	Ν	LOW	WATER	1	1	0	1	1	1	3	1	0	0	0	0	1
04	1	1	0	0	Ν	ΗI	WATER	1	1	0	1	1	2	1	1	0	0	0	0	1
05	1	1	0	30	Ν	ΗI	WATER	1	1	0	1	1	2	2	1	0	0	0	0	1
06	1	1	0	90	Ν	ΗI	WATER	1	1	0	1	1	2	3	1	0	0	0	0	1

From the data depicted here, the model will discern that it must locate data in the cultivar (CU), field (FL), initial conditions (IC), planting (MP), irrigation (MI), fertilizers (MF), residue (MR) and simulation control (SM) sections of FILEX. The zeros for soil analysis (SA), chemical (MC), tillage (MT), environment (ME), and harvest (MH) indicate that no data are required for these sections. In treatment one, the irrigation data to be used would be those appearing first in the irrigation section. The fertilizer data for treatment one would be those appearing first in the fertilizer section. For the second treatment the same irrigation data are used but the second set of fertilizer data from the fertilizer section is used. For the fourth treatment, the second irrigation data set and the first fertilizer data set are used.

Details of all sections of FILEX are provided in Table 3. It should also be noted that not all entries within a particular section are required for all simulations. To facilitate construction of a typical FILEX, various examples are provided in the "Examples" section below.

SIMULATION CONTROL INFORMATION

The Simulation Controls section (see Table 4) in FILEX has two basic functions. First, it specifies the options to be used in a particular simulation run and controls the types and frequencies of outputs to be obtained. An OPTIONS line specifies whether the water and nitrogen balances will be used and whether pest damage will be considered in the run. The METHODS line specifies the methods for computing processes such as evapotranspiration and photosynthesis. The MANAGEMENT line specifies whether different management operations, such as planting and irrigation, are to be based on recorded data as input in the FILEX or are to be simulated internally based on automatic management options specified in this section. The OUTPUTS line specifies the frequency of daily outputs and the types of outputs to write (such as summary, growth, water, nitrogen and pest). Since there are no default selections for the variables contained under Methods, Management and Outputs, selections for these variables *must* be made.

The second function of the Simulation Control section is to specify the parameters for controlling automatic management in the simulation (if any are used) for planting, irrigating, applying nitrogen and residues, and harvesting. For example, information on the "sowing" and "harvesting" windows for use with hypothetical experiments, as well as the soil water threshold that triggers automatic application and the depth of water management, are contained in this section.

One Simulation Control section is required for each FILEX, and more than one could be used to control simulation for different treatments if needed.

TABLE 4.SIMULATION CONTROLS.

S TRUCTURE

Variable	Variable Name ¹	l Header ²	Format ³		
Line 1: General					
Level number	LNSIM	Ν	0	I	2
Identifier	TITCOM	GENERAL	1	С	11
Runs:					
Years	NYRS	NYERS	4	I	2
Replications	NREPSQ	NREPS	4	I	2
Start of Simulation, code:	ISIMI	START	5	С	1
Suggested codes:					
E = On reported emergence date					
I = When initial conditions measured					
P = On reported planting date					
S = On specified date					
Date, year + day (if needed)	YRSIM	SDATE	1	I	5
Random number seed	RSEED	RSEED	1	I	5
Title	TITSIM	SNAME	1	С	25
Line 2: Options					
Level number	LNSIM	Ν	0	I	2
Identifier	TITOPT	OPTIONS		Ċ	11
Water $(Y = yes; N = no)$	ISWWAT	WATER	5	C	1
Nitrogen $(Y = yes; N = no)$	ISWNIT	NITRO	-	C	1
Symbiosis (Y= yes, N= no, U= unlimite		SYMBI	5	C	1
Phosphorus $(Y = yes; N = no)$	ISWPHO	PHOSP	-	C	1
Potassium ($Y = yes; N = no$)	ISWPOT	POTAS	5	C	1
Diseases and other pests (Y = yes; N =		DISES	5	C	1
(Y = simulate process; N = do not simulate process)					
· · · · · · · · · · · · · · · · · · ·					
Line 3: Methods					
Level number	LNSIM	N	0	I	2
Identifier	TITMET	METHODS	1	С	11
Weather	MEWTH	WTHER	5	С	1
M = Measured data, as recorded					
G = Simulated data, stored as *.WTG files					
S = Simulated data (Internal weather generator using					
monthly inputs) W = Simulated data (Internal WGEN weather generator)					
Initial Soil Conditions	MESIC	INCON	5	С	1
M = As reported					
S = Simulated outputs from previous model run					

Light	int	erception	MELI	LIGHT	5	С	1
Е	=	Exponential with LAI					
Н	=	'Hedgerow' calculations					
Evapor	rati	on	MEEVP	EVAPO	5	С	1
P	=	FAO - Penman					
R	=	Ritchie modification of Priest	ley-Taylor				
Infilt	rat	ion	MEINF	INFIL	5	С	1
R	=	Ritchie method					
S	=	Soil Conservation Service rout:	ines				
Photos	synt	hesis	MEPHO	PHOTO	5	С	1
С	=	Canopy photosynthesis response	curve				
R	=	Radiation use efficiency					
L	=	Leaf photosynthesis response cu	urve				
Line 4	4: M	lanagement					
Level			LNSIM	Ν	0	I	2
Identi			TITMAT	MANAGEMENT	-		- 11
		Transplanting	IPLTI	PLANT	5	C	1
A 201101	=				0	Ũ	-
R	=		52000027				
		on and Water Management	IIRRI	IRRIG	5	С	1
30 A	=				0	Ũ	-
N		Not irrigated					
F		Automatic with fixed amounts at	each irriga	tion date			
R		On reported dates					
D	=		nting				
- Fertil	liza		IFERI	FERTI	5	С	1
A	=				-	-	
N	=	Not fertilized					
F		Automatic with fixed amounts at	each fertil	ization date			
R		On reported dates					
D	=	As reported, in days after plan	nting				
Residu	ie a	applications	IRESI	RESID	5	С	1
A	=	Automatic for multiple years/ci			-	-	
N	=		of polycomoop				
F	=		each residue	e applicatio	n d	ate	2
- R	=	On reported dates					-
D	=	As reported, in days after plan	nting				
Harves		no reporteda, in dayo areer pra	IHARI	HARVS	5	С	1
A	=	Automatic when conditions satis		111100	5	C	-
G	=	At reported growth stage(s)	52000027				
M	=	At maturity					
R	=	On reported date(s)					
D	=	On reported days after planti	na				
D	_	on reported days arter praiter					

Line 5: Outputs					
Level number	LNSIM	N	0	I	2
Identifier	TITOUT	OUTPUTS	1	С	11
Experiment (Y = yes, files named with the	ne				
experiment code; N = no)	IOX	FNAME	5	С	1
General (Y = yes, new; A = append; N = n	no)				
Overview	IDETO	OVVEW	5	С	1
Summary	IDETS	SUMRY	5	С	1
Details - individual aspects					
Frequency of output (days)	FROP	FROPT	4	I	2
Growth $(Y = yes; N = no)$	IDETG	GROUT	5	С	1
Carbon ($Y = yes; N = no$)	IDETC	CAOUT	5	С	1
Water (Y = yes; N = no)	IDETW	WAOUT	5	С	1
Nitrogen (Y = yes; N = no)	IDETN	NIOUT	5	С	1
Phosphorous (Y = yes; N = no)	IDETP	MIOUT	5	С	1
Diseases and other pests (Y = yes;					
N = no)	IDETD	DIOUT	5	С	1
Wide (Y) or 80-column (N) daily					
outputs	IDETL	LONG	5	С	1

Other lines

These deal separately with different aspects of automatic management. They are only necessary if automatic management is called for.

LNSIM	Ν	0	I	2	
TITPLA	PLANTING	1	С	11	
)PWDINF	PFRST	1	I	5	
PWDINL	PLAST	1	I	5	
SWPLTL	PH20L	1	R	5	0
SWPLTH	PH2OU	1	R	5	0
SWPLTD	PH20D	1	R	5	0
PTX	PSTMX	1	R	5	0
PTTN	PSTMN	1	R	5	0
LNSIM	Ν	0	I	2	
TITIRR	IRRIGATION	1	С	11	
DSOIL	IMDEP	1	R	5	0
THETAC	ITHRL	1	R	5	0
IEPT	ITHRU	1	R	5	0
IOFF	IROFF	1	С	5	
IAME	IMETH	1	С	5	
AIRAMT	IRAMT	1	R	5	0
EFFIRR	IREFF	1	R	5	2
	TITPLA Y) PWDINF PWDINL SWPLTL SWPLTD PTX PTTN LNSIM TITIRR DSOIL THETAC IEPT IOFF IAME AIRAMT	TITPLAPLANTINGTITPLAPLANTINGPWDINFPFRSTPWDINLPLASTSWPLTLPH20LSWPLTDPH20DPTXPSTMXPTTNPSTMNLNSIMNTITIRRIRRIGATIONDSOILIMDEPTHETACITHRLIEPTITHRUIOFFIROFFIAMEIMETHAIRAMTIRAMT	TITPLAPLANTINGTITPLAPLANTINGPWDINFPFRSTPWDINLPLASTSWPLTLPH20LSWPLTDPH20DPTXPSTMXPTTNPSTMNLNSIMNTITIRRIRRIGATIONDSOILIMDEPTHETACITHRLIEPTITHRUIOFFIROFFIAMEIMETHAIRAMTIRAMT	TITPLAPLANTING1CTITPLAPLANTING1CPWDINFPFRST1IPWDINLPLAST1ISWPLTLPH20L1RSWPLTDPH20D1RPTXPSTMX1RPTTNPSTMN1RLNSIMN0ITITIRRIRRIGATION1CDSOILIMDEP1RIEPTITHRU1RIOFFIROFF1CAIRAMTIRAMT1R	TITPLAPLANTING1C11TITPLAPLANTING1C11PWDINFPFRST1I5PWDINLPLAST1I5SWPLTLPH20L1R5SWPLTDPH20D1R5PTXPSTMX1R5PTNPSTMN1R5LNSIMN0I2TITIRRIRRIGATION1C11DSOILIMDEP1R5IEPTITHRU1R5IOFFIROFF1C5IAMEIMETH1C5AIRAMTIRAMT1R5

Nitrogen Fertilization:						
Level number	LNSIM	Ν	0	I	2	
Identifier	TITNIT	NITROGEN	1	С	11	
Application depth, cm	DSOILN	NMDEP	1	R	5	0
Threshold, N stress factor, %	SOILNC	NMTHR	1	R	5	0
Amount per application, kg N ha ⁻¹	SOILNX	NAMNT	1	R	5	0
Material, code	NCODE	NCODE	1	С	5	
End of applications, growth stage	NEND	NAOFF	1	С	5	
Residues:						
Level number	LNSIM	Ν	0	I	2	
Identifier	TITRES	RESIDUES	1	С	11	
Incorporation percentage, % of						
remaining	RIP	RIPCN	1	R	5	0
Incorporation time, days after harves	TNRESDL	RTIME	1	I	5	
Incorporation depth, cm	DRESMG	RIDEP	1	R	5	0
Harvests:						
Level number	LNSIM	Ν	0	I	2	
Identifier	TITHAR	HARVESTS	1	С	11	
Earliest, days after maturity	HDLAY	HFRST	1	Ι	5	
Latest, year and day of year (YRDOY)	HLATE	HLAST	1	Ι	5	
Percentage of product harvested, %	HPP	HPCNP	1	R	5	0
Percentage of residue harvested, %	HRP	HRCNR	1	R	5	0

 $^{1}\,$ Abbreviations used as variable names in the IBSNAT models.

- 2 Abbreviations suggested for use in header lines (those designated with '@') within the file.
- ³ Formats are presented as follows: number of leading spaces, variable type (Character = C, Real = R, Integer = I), variable width, and (if real) number of decimals.

EXAMPLES OF FILEX FOR VARIOUS EXPERIMENTS

The examples chosen below commence with the most simple experiment where only a minimum set of data are required and end with a soil fertility simulation experiment where the simulation models require considerably more data.

EXPERIMENT 1 (POTENTIAL YIELD)

Users may wish to examine the impact of weather on crop duration and yield potential of two varieties of soybean at two sites with no water, nutrient or pest constraints. For this experiment the only data required in FILEX are the experiment and treatment titles and codes for the variety, soil, a weather data set, planting data and simulation controls. The codes for variety and soil must also be contained in the cultivar and soil files, respectively, so that crop models can obtain the genetic coefficients for the planted variety and the soil inputs for the soil in which the crop was grown. The file name for weather data is required, e.g., UFGA8801.WTH. Alternately, the code for weather data can be specified to construct a file name which contains daily weather data in the DSSAT v3 crop models, e.g., the code UFGA for the weather station would result in the file name of UFGA8801.WTH if the experiment were planted in 1988. An example FILEX for this experiment is given in Table 5 and the required data are highlighted. Note the default settings used in the Simulation Controls section.

TABLE 5. EXAMPLE FILEX FOR A POTENTIAL YIELD EXPERIMENT IN WHICHTHERE ARE TWO VARIETIES OF SOYBEAN GROWN IN TWO LOCATIONS. THEFILE NAME FOR STORING THIS EXPERIMENT INFORMATION WOULD BEUFGA9101.SBX.

*EXP.DETAILS: UFGA9101SB SOYBEAN POTENTIAL YIELD, 2 VARIETIES, 2 SITES (EXAMPLE) *GENERAL @PEOPLE A. B. HOWART AND K. T. BARTH @ADDRESS DEPARTMENT OF AGRONOMY, THE UNIVERSITY OF FLORIDA @SITE GAINESVILLE, FLORIDA, ANDHONOLULU, HAWAII @ PAREA PRNO PLEN PLDR PLSP PLAY HAREA HRNO HLEN HARM..... 30.0 4 15.0 0 50 N-S 10.0 10 2.0 Hand Harvest @NOTES Example experiment with 2 varieties at 2 locations. BRAGG and COBB soybeans are planted at Gainesville, Florida in field UFGA0001, weather station UFGA and soil UFGA9101, and planted at Honolulu, Hawaii, in field IBUH0001, weather station IBUH in soil IBUH8801 *TREATMENTS -----FACTOR LEVELS-----0 0 1 0 1 1 0 0 BRAGG AT GAINESVILLE 1 1 0 0 0 0 0 0 1 2 1 0 0 BRAGG AT HAWAII 1 2 0 0 1 0 0 0 0 0 0 0 1 3 1 0 0 COBB AT GAINESVILLE 2 1 0 0 1 0 0 1 0 0 0 0 0 2 2 4 1 0 0 COBB AT HAWAII 0 0 1 0 0 0 0 0 0 1 0 *CULTIVARS @C CR INGENO CNAME 1 SB UF0001 BRAGG 2 SB UF0002 COBB *FIELDS @L ID_FIELD WSTA.... FLSA FLOB FLDT FLDD FLDS FLST SLTX SLDP ID_SOIL 1 UFGA0001 UFGA 90-N 0 DR001 0 0 0 180 UFGA9101 SA 2 IBUH0001 IBUH 30-N 0 DR001 0 0 200 IBUH8801 0 SALO *PLANTING DETAILS @P PDATE EDATE PPOP PPOE PLME PLDS PLRS PLRD PLDP PLWT PAGE PENV PLPH 1 91177 75 4.0 -99 -99.0 -99.0 30.0 30.0 S R 0 -99

Input and Output Files • Input and O

*S:	IMULATION CO	NTROLS									
@N	GENERAL	NYERS	NREPS	START	SDATE	RSEED	SNAME				
1		1	1	S	91177	2150	POTEN	TIAL Y	IELD		
@N	OPTIONS	WATER	NITRO	SYMBI	PHOSP	POTAS	DISES				
1		N	N	N	N	N	N				
@N	METHODS	WTHER	INCON	LIGHT	EVAPO	INFIL	PHOTO				
1		М	М	E	R	S	С				
@N	MANAGEMENT	PLANT	IRRIG	FERTI	RESID	HARVS					
1		R	N	N	N	Μ					
@N	OUTPUTS	XCODE	OVVEW	SUMRY	FROPT	GROTH	CARBN	WATER	NITRO	MINER DISES	LONG
1		N	Y	Y	3	Y	N	N	N	N N	N
@	AUTOMATIC M	ANAGEMI	ENT								
@N	PLANTING	PFRST	PLAST	PH2OL	PH2OU	PH2OD	PSTMX	PSTMN			
1		155	200	40	100	30	40	10			
@N	IRRIGATION	IMDEP	ITHRL	ITHRU	IROFF	IMETH	IRAMT	IREFF			
1		30	50	100	GS000	IR001	10	1.00			
@N	NITROGEN	NMDEP	NMTHR	NAMNT	NCODE	NAOFF					
1		30	50	25	FE001	GS000					
@N	RESIDUES	RIPCN	RTIME	RIDEP							
1		100	1	20							
@N	HARVEST	HFRST	HLAST	HPCNP	HPCNR						
1		0	365	100	0						

EXPERIMENT 2 (CLIMATE CHANGE STUDY)

If users wish to determine the effects of a 4°C temperature increase on yield of the crops in Experiment 1 described above, a section on Environmental Modification would be added to FILEX. As shown in Table 6, which illustrates an example FILEX for this experiment, the same 4 treatments from Experiment 1 are included, then 4 additional treatments are specified with the Environmental Modification level set to 1 under the Factor Levels in the Treatments section. In the Environmental Modification section, an entry is made to specify that 4°C is added to both daily minimum and maximum temperatures starting on the day of planting. In this hypothetical experiment, which is to be simulated, there are still no water, nutrient or pest stresses, and the soil water and nitrogen balances are still not used. The settings for the Simulation Controls section remain the same as those given in the example FILEX for "Experiment 1" (Table 5).

TABLE 6. EXAMPLE FILEX FOR A CLIMATE CHANGE EXPERIMENT IN WHICH MAXIMUM AND MINIMUM DAILY TEMPERATURE ARE RAISED 4 °C, AND There Are 2 Varieties of Soybean Grown in Two Locations. The FILE NAME FOR STORING THIS EXPERIMENT INFORMATION WOULD BE UFGA9102.SBX.

*EXP.DETAILS: UFGA9102SB SOYBEAN CLIMATE CHANGE : 2 VARIETIES, 2 SITES (EXAMPLE2)

*GENERAL @PEOPLE A. B. HOWART AND K. T. BARTH @ADDRESS DEPARTMENT OF AGRONOMY, THE UNIVERSITY OF FLORIDA @SITE GAINESVILLE, FLORIDA, ANDHONOLULU, HAWAII @ PAREA PRNO PLEN PLDR PLSP PLAY HAREA HRNO HLEN HARM 4 15.0 30.0 0 50 N-S 10.0 10 2.0 Hand Harvest @NOTES This is a climate change experiment with 2 varieties at 2 locations Varieties BRAGG and COBB are planted at Gainesville, Florida in field

UFGA0001, weather station site UFGA and soil UFGA9101, and at Honolulu, Hawaii, in field IBUH0001, weather station site IBUH in soil IBUH8801. Max. and Min. temperature are increased at 4C.

*TREATMENTSFACTOR LEVELS														
@N R O C TNAME	CU	FL	SA	IC	MP	ΜI	MF	MR	MC	MT	ME	MH	SM	
1 1 0 0 BRAGG AT GAINESVILLE	1	1	0	0	1	0	0	0	0	0	0	0	1	
2 1 0 0 BRAGG AT HAWAII	1			0	1	0	0	0	0	0	0	0	1	
3 1 0 0 COBB AT GAINESVILLE	2	1		0	1	0	0	0	0	0	0	0	1	
4 1 0 0 COBB AT HAWAII	2	2		0	1	0	0	0	0	0	0	0	1	
5 1 0 0 +4 C, BRAGG AT GAINESVILL	1	1		0	1	0	0	0	0	0	1	0	1	
6 1 0 0 +4 C, BRAGG AT HAWAII	1	2		0	1	0	0	0	0	0	1	0	1	
7 1 0 0 +4 C, COBB AT GAINESVILLE	2	1	0	0	1	0	0	0	0	0	1	0	1	
								0	1	0	1			
*CULTIVARS @C CR INGENO CNAME 1 SB UF0001 BRAGG 2 SB UF0002 COBB														
*FIELDS														
@L ID_FIELD WSTA FLSA FLOB 1	FLDT	. 1	FLDI) I	FLD	S E	TLS1	r :	SLTX	ζ 3	SLDI	?]	ID_S	OIL
1 UFGA0001 UFGA 90-N 0 D	R001	-	()	(0	() :	SA		180) UI	FGA9	101
2 IBUH0001 IBUH 30-N 0 D	R001	-	()	(C	() :	SALC)	200) IF	SUH8	801

DSSAT v3, Volume 2 • DSSAT v3,

*PLANTING DETAILS @P PDATE EDATE PPOP PPOE PLME PLDS PLRS PLRD PLDP PLWT PAGE PENV PLPH 1 91177 30.0 30.0 S R 75 0 4.0 -99 -99 -99.0 -99.0 *ENVIRONMENTAL MODIFICATIONS @E ODATE EDAY ERAD EMAX EMIN ERAIN ECO2 EDEW EWIND 1 91177 A 0.0 A 0.0 A 4.0 A 4.0 A 0.0 A 0 A 0.0 A 0.0 *SIMULATION CONTROLS @N GENERAL NYERS NREPS START SDATE RSEED SNAME..... 1 1 1 S 91177 2150 CLIMATE CHANGE SIMULATION @N OPTIONS WATER NITRO SYMBI PHOSP POTAS DISES 1 Ν Ν Ν Ν Ν Ν @N METHODS WTHER INCON LIGHT EVAPO INFIL PHOTO 1 Ε R Μ Μ S C @N MANAGEMENT PLANT IRRIG FERTI RESID HARVS 1 R Ν N Ν Μ @N OUTPUTS FNAME OVVEW SUMRY FROPT GROUT CAOUT WAOUT NIOUT DIOUT LONG 1 Y Ν Y Y 3 Ν Ν Ν Ν Ν Ν @ AUTOMATIC MANAGEMENT @N PLANTING PFRST PLAST PH2OL PH2OU PH2OD PSTMX PSTMN 1 155 200 40 100 30 40 10 @N IRRIGATION IMDEP ITHRL ITHRU IROFF IMETH IRAMT IREFF 1 30 50 100 GS000 IR001 10 1.00 NMDEP NMTHR NAMNT NCODE NAOFF @N NITROGEN 1 30 50 25 FE001 GS000 @N RESIDUES RIPCN RTIME RIDEP 1 100 1 20 HFRST HLAST HPCNP HPCNR @N HARVEST 365 100 1 0 0

```
DSSAT v3, Volume 2 • DSSAT v3,
```

EXPERIMENT 3 (IRRIGATION STUDIES)

In this example, one variety of maize is planted on 2 different dates, with and without irrigation in a factorial arrangement. Table 7 shows the corresponding example FILEX with the 4 treatments. Note that there are 2 entries in the Planting section and 2 entries in the Irrigation section since the date for the second planting is different from that of the first planting. Also in this example, there is an Initial Conditions section with initial values of soil water. The "-99" values in the initial NO₃ and NH₄ columns indicate that initial values of soil nitrogen were not taken. Because the soil nitrogen balance is switched off in the Simulation Controls section, this will not affect results. Also note that the water balance is switched on in the Simulation Controls section as indicted by the "Y" under WATER in Options, and that the switch for irrigation management in the Simulation Controls section is "R" under IRRIG in Management, which means that reported field data are to be used in the simulation. Output controls specify that the overview, summary, daily growth, and daily water outputs are to be produced with 3 day intervals.

TABLE 7. EXAMPLE FILEX FOR A MAIZE IRRIGATION EXPERIMENT. THE FILENAME FOR STORING FHIS EXPERIMENT INFORMATION WOULD BEUFGA8101.MZX.

*EXP.DETAILS: UFGA8101MZ MAIZE EXPERIMENT, IRR. AND NON-IRR. (EXAMPLE3) *GENERAL @PEOPLE DR. J. BENNETT @ADDRESS GAINESVILLE, FLORIDA @SITE GAINESVILLE, FL 29.63N;82.37W;40M;SE-USA @ PAREA PRNO PLEN PLDR PLSP PLAY HAREA HRNO HLEN HARM..... 4 15.0 10 2.0 Hand harvest 50 N-S 30.0 0 10.0 @NOTES This is a maize irrigation experiment, conducted at Gainesville, Florida, using the variety Pioneer 304C with 4 treatments : 2 irrigation levels and 2 planting dates *TREATMENTS -----FACTOR LEVELS------@N R O C TNAME...... MT ME MH SM CU FL SA IC MP MI MF MR MC MT ME MH SM 1 1 0 0 IRRIG, PL-DAY 177 PI304C 1 0 1 1 0 0 0 0 1 1 1 0 0 1 2 1 0 0 NON-IRR, PL-DAY 177, PIO304 0 1 1 0 0 0 0 0 0 1 1 0 2 2 3 1 0 0 IRRIG, PL-DAY 195 PI304C 1 1 0 2 0 0 0 0 0 0 1 1 2 0 4 1 0 0 NON-IRR, PL-DAY 195, PIO30 1 0 2 0 1 0 0 0 0 0 *CULTIVARS @C CR INGENO CNAME 1 MZ UF0001 PI304C *FIELDS @L ID_FIELD WSTA.... FLSA FLOB FLDT FLDD FLDS FLST SLTX SLDP ID_SOIL 1 UFGA0001 UFGA 90-N 0 DR001 0 0 0 LOSA 180 UFGA7701 *INITIAL CONDITIONS PCR ICDAT ICRT @CICND ICRN ICRE 1 SB 81177 100 0 1.00 1.00 @C ICBL SH2O SNH4 SNO3 1 5 0.086 -99.0 -99.0 1 15 0.086 -99.0 -99.0 1 30 0.086 -99.0 -99.0 1 45 0.086 -99.0 -99.0 60 0.086 -99.0 -99.0 1 90 0.076 -99.0 -99.0 1 1 120 0.076 -99.0 -99.0 1 150 0.130 -99.0 -99.0 1 180 0.258 -99.0 -99.0

@C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	SB ICBL 5 15 30 45 60 90 120 150	0.080 0.077 0.080 0.080 0.076 0.055 0.110	ICRT 100 SNH4 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	ICRN 1.00	ICRE 1.00							
*PL	ANTIN	g deta:	ILS										
		EDATE	PPOP	PPOE	PLME	PLDS	PLRS	PLRD	PLDP	PLWT	PAGE	PENV	PLPH
	81177 81195		9.5 9.5	9.5 9.5		R R	100 100	0	4.0	-99 -99		-99.0 -99.0	
2	01195		9.5	9.5	5	ĸ	100	0	4.0	-99	-99	-99.0	-99.0
*IR	RIGATI	ION ANI	O WATER	R MANAG	GEMENT								
@I	IEFF	IDEP	ITHR	IEPT	IOFF	IAME	IAMT						
1	1.00		50		GS000	IR001	15						
_	IDATE	IROP IR001	IRVAI 19										
		IR001	20										
		IR001	20										
		IR001	20										
1		IR001	20										
@I	EFIR	IDEP	ITHR	IEPT	IOFF		IAMT						
2	1.00 IDATE	30 IROP	50 IRVAI		IB001	TROOT	15						
		IROP IRO01	20										
		IR001	20										
2	81239	IR001	20										
		IR001	20										
2	81258	IR001	30										
*ST	MIIT.ATT	ION COL	ALUBUR										
	GENERA			NREPS	START	SDATE	RSEED	SNAME.					
1			1	1	S	81177	2150	MAIZE	- IRRI	IGATION	ſ		
@N	OPTION	1S	WATER	NITRO	SYMBI	PHOSP	POTAS	DISES					
1		_	Y	N	N	N	N	N					
@N 1	METHOI	JS		INCON	LIGHT E								
	MANAGI	EMENT	M PLANT	MIRRIG		R RESID	S HARVS	C					
1			R	R	N	N	M						
	OUTPUI	ГS	FNAME	OVVEW	SUMRY	FROPT	GROUT	CAOUT	WAOUT	NIOUT	MIOUT	DIOUT	LONG
1			N	Y	Y	3	Y	N	Y	N	N	N	N

@	AUTOMATIC M	IANAGEMI	ENT					
@N	PLANTING	PFRST	PLAST	PH2OL	PH2OU	PH2OD	PSTMX	PSTMN
1		155	200	40	100	30	40	10
@N	IRRIGATION	IMDEP	ITHRL	ITHRU	IROFF	IMETH	IRAMT	IREFF
1		30	50	100	GS000	IR001	10	1.00
@N	NITROGEN	NMDEP	NMTHR	NAMNT	NCODE	NAOFF		
1		30	50	25	FE001	GS000		
@N	RESIDUES	RIPCN	RTIME	RIDEP				
1		100	1	20				
@N	HARVEST	HFRST	HLAST	HPCNP	HPCNR			
1		0	365	100	0			

EXPERIMENT 4 (FERTILIZER AND IRRIGATION STUDIES)

In this final example, a maize crop is to be grown with and without irrigation, and with 3 N fertilizer amounts (0, 50, and 100 kg N/ha). In Table 8, the example FILEX shows that Fertilizer and Residue sections have been added. The Residue section has only one entry, which means that all treatments had the same residue management history. In the Fertilizer section, there are 2 entries to specify the 50 and 100 kg N/ha application levels. An entry was not required for the 0 kg N/ ha. Treatments 2, 4, and 6 were not irrigated, as indicated by the 0's in the MI column, and treatments 1, 3, and 5 all had the same irrigation schedule. For example, Treatment 5 had 50 kg N/ha applied and was irrigated 5 times. In the Simulation Controls section, the water and nitrogen balances were both turned on as indicated by the "Y" under WATER and NITRO in Options. This example does not show a Soil Analysis section, since soil samples were collected from the field for organic carbon, phosphorus, etc., and used to replace the values in the soil file which may have been collected from another site. In this example, recorded data were selected in the Simulation Controls section in Management as shown by the irrigation section switched to "R" under IRRIG. If no irrigation data are available, then the user can select the simulated irrigation management option ("A" or "R") which are both automatic. If the automatic ("A") option for fertilizer or irrigation is specified in Management in the Simulation Controls section, then the model determines when management applications for these are made. In that case, the user should specify the set points on when and how much irrigation and/or fertilizer are applied and the method used to apply them.

TABLE 8. EXAMPLE FILEX FOR A MAIZE IRRIGATION AND NITROGEN LEVELEXPERIMENT. THE FILE NAME FOR STORING THIS EXPERIMENT INFORMATIONWOULD BE UFGA8102.MZX.

*EXP.DETAILS: UFGA8102MZ MAIZE EXPERIMENT, IRR. AND NITROGEN (EXAMPLE4) *GENERAL @PEOPLE DR. K. J. BOOTE @ADDRESS DEPARTMENT OF AGRONOMY, UNIV. OF FLORIDA, GAINESVILLE @SITE IRRIGATION PARK, GAINESVILLE, FLORIDA 29.63N; 82.37W; 40M; SE-USA @ PAREA PRNO PLEN PLDR PLSP PLAY HAREA HRNO HLEN HARM...... 60.0 6 10.0 0 100 N-S 20.0 10 2.0 Hand harvest @NOTES This is a maize irrigation experiment, conducted at Gainesville, Florida, using the variety Pioneer 304C with 4 treatments : 2 irrigation levels and 2 planting dates *TREATMENTS -----FACTOR LEVELS------0 1 1 0 0 IRRIG, 0 N 1 1 1 1 1 0 1 0 0 0 0 1 2 1 0 0 NON-IRRIG, 0 N 1 1 0 1 1 0 0 1 0 0 0 0 1 3 1 0 0 IRRIG, 50 KG/HA N 1 1 0 1 1 1 1 1 0 1 0 0 0 4 1 0 0 NON-IRRIG, 50 KG/HA 1 1 0 1 1 0 1 1 0 0 0 0 1 1 1 0 1 1 1 2 1 5 1 0 0 IRRIG, 100 KG/HA 1 0 0 0 0 1 0 2 1 0 1 1 1 0 0 0 1 6 1 0 0 NON-IRRIG, 100 KG/HA 0 *CULTIVARS @C CR INGENO CNAME 1 MZ UF0001 PI304C *FIELDS @L ID_FIELD WSTA.... FLSA FLOB FLDT FLDD FLDS FLST SLTX SLDP ID_SOIL 1 UFGA0001 UFGA 90-N 0 0 LOSA 180 UFGA7701 0 DR001 0 *INITIAL CONDITIONS QC PCR ICDAT ICRT ICND ICRN ICRE 1 SB 81177 1.00 1.00 100 0 ICBL SH2O SNH4 QC SNO3 5 0.086 1 0.6 1.5 1 15 0.086 0.6 1.5 1.5 1 30 0.086 0.6 1 45 0.086 0.6 1.5 1 60 0.086 0.6 1.5 1 90 0.076 0.6 0.6 1 120 0.076 0.6 0.5

1 150 0.130 0.6 0.5 1 180 0.258 0.6 0.5 *PLANTING DETAILS @P PDATE EDATE PPOP PPOE PLME PLDS PLRS PLRD PLDP PLWTPAGE PENV PLPH 1 81177 4.0 -99 -99 -99.0 -99.0 9.5 9.5 S 100 0 R *IRRIGATION AND WATER MANAGEMENT @I IEFF IDEP ITHR IEPT IOFF IAME IAMT 1 1.00 30 50 100 IB001 IB001 15 @I IDATE IROP IRVAL 1 81204 IR001 19 1 81211 IR001 20 1 81227 IR001 20 1 81239 IR001 20 1 81249 IR001 20 *FERTILIZERS (INORGANIC) @F FDATE FMCD FACD FDEP FAMN FAMP FAMK FAMC FAMO FOCD 1 81177 FEO05 APO01 10 50 0 0 0 0 0 2 81177 FEO05 APO01 10 100 0 0 0 0 0 *RESIDUES AND OTHER ORGANIC MATERIALS @R RDATE RCOD RAMT RESN RESP RESK RINP RDEP 1 81177 RE001 1000 0.80 0.00 0.00 100 15 *SIMULATION CONTROLS NYERS NREPS START SDATE RSEED SNAME..... @N GENERAL 1 1 2150 MAIZE-IRRIG & NITROGEN 1 S 81177 WATER NITRO SYMBI PHOSP POTAS DISES @N OPTIONS 1 Υ Y Ν Ν N Ν @N METHODS WTHER INCON LIGHT EVAPO INFIL PHOTO 1 Μ Μ Е R S С PLANT IRRIG FERTI RESID HARVS @N MANAGEMENT 1 R R R R М @N OUTPUTS FNAME OVVEW SUMRY FROPT GROUT CAOUT WAOUT NIOUT MIOUT DIOUT LONG 1 3 Υ Ν Y Y Y Υ Υ Ν Ν Ν AUTOMATIC MANAGEMENT @ PFRST PLAST PH2OL PH2OU PH2OD PSTMX PSTMN @N PLANTING 1 200 40 100 30 40 155 10 @N IRRIGATION IMDEP ITHRL ITHRU IROFF IMETH IRAMT IREFF 100 GS000 IR001 1 30 50 10 1.00 @N NITROGEN NMDEP NMTHR NAMNT NCODE NAOFF 25 FE001 GS000 1 30 50 @N RESIDUES RIPCN RTIME RIDEP 1 100 1 2.0 @N HARVEST HFRST HLAST HPCNP HPCNR 1 0 365 100 0

```
DSSAT v3, Volume 2 • DSSAT v3,
```

Weather Data File

Daily weather data are required and must be available for the duration of the growing season, beginning with the day of planting and ending at crop maturity. Ideally, the weather file (FILEW) should contain data collected from before planting to after maturity. This would allow a simulation to be started before planting, thus providing an estimate of soil conditions at planting time. Additional weather data would also allow users to select alternate planting dates, simulate planting decisions based on weather and soil conditions, and simulate longer duration crop cultivars for model sensitivity analysis.

These files should be named according to the file naming convention described previously in the section entitled "File Naming Conventions." The first lines in each weather data file, regardless of file length, contain some details of the site (name, country, annual average temperature and amplitude of its monthly averages, latitude and longitude, elevation). On all subsequent lines, there could be 8 variables, 7 of which are different weather aspects. It is not necessary to have data for all variables, but the minimum data required for DSSAT v3 crop models are solar radiation, minimum and maximum air temperature and rainfall. The standard format for variables should be followed. The structure of the file and an abbreviated example is shown in Table 9. The file as presented is similar to the standard weather data file used by IBSNAT models in DSSAT v2.1 (IBSNAT, 1989), but scope for more variables has been added. The DSSAT v2.1 files only included total solar radiation, maximum and minimum air temperature, and precipitation.

TABLE 9. WEATHER DATA FILE. (FILEW)

STRUCTURE

Variable	Variable Name ¹	Header ²	Format ³
Line 1 *WEATHER : Site + country name		0 1	C 10 C 60
Line 2 Institute code	INSTE	IN	2 C 2
Site code Latitude, degrees (decimals)	SITEE XLAT	SI LAT	0 C 2 1 R 8 3
Longitude, degrees (decimals) Elevation, m	XLONG ELEV	LONG ELEV	1 R 8 3 1 R 5 0
Air temperature average, °C Air temperature amplitude, monthly	TAV	TAV	1 R 5 1
averages, °C	TAMP	AMP	1 R 5 1
Height of temperature measurements, m Height of wind measurements, m	n REFHT WNDHT	TMHT WMHT	1 R 5 1 1 R 5 1
All other lines			
Year + days from Jan. 1 Solar radiation, MJ m ⁻² day ⁻¹ Air temperature maximum, °C	YRDOYW SRAD TMAX	DATE SRAD TMAX	0 I 5 1 R 5 1 1 R 5 1
Air temperature minimum, °C	TMIN	TMIN	1 R 5 1
Precipitation, mm Dewpoint temperature ⁵ , °C Wind run ⁵ , km day ⁻¹	RAIN TDEW WINDSP	RAIN DEWP WIND	1 R 5 1 1 R 5 1 1 R 5 1
Photosynthetic active radiation (PAR) moles $m^{-2} day^{-1}$	PAR	PAR	1 R 5 1

- ¹ Abbreviations used as variable names in the IBSNAT modelS.
- 2 Abbreviations suggested for use in header lines (those designated with '@') within the file.
- ³ Formats are presented as follows: number of leading spaces, variable type (Character = C, Real = R, Integer = I), variable width, and (if real) number of decimals.
- ⁴ The blank space following a weather variable can be used to place a "flag," which would indicate an estimated value had replaced missing or suspect data. (e.g., UFGAE 29.6 32.6...), where 'E' is the "flag" indicating the data item following it (i.e., '29.6') is an error value. In this example, since no "flag" preceeds the '32.6', this number is a reported value. (See Appendix D for a full listing of Weather Flags.)
- ⁵ Optional data, which are used by crop models for some options but are not necessary.

Exampl	e Wea	THER D	ATA F ILI	E. (FILE	E VV = '	'UFG	A780	1.WTH	″)
*WEATH	er : G	AINESV	ILLE,FI	LORIDA,	U.S.A				
@ INSI		LAT	LONG	ELEV	TAV	AMP	REFHT	WNDHT	
UFGA	29.	630 -	82.370	40	20.9	7.4	1.5	2.0	
@DATE	SRAD	TMAX	TMIN	RAIN					
78001	5.3	18.3	13.3	4.8					
78002	11.1	18.3	8.3	0.0					
78003	14.7	13.9	3.3	0.0					
78004	14.4	19.4	0.0	0.0					
78005	10.9	23.9	6.7	0.0					
78006	10.8	25.6	11.1	0.0					
78007	9.5	25.0	9.4	0.0					
78008	3.1	23.9	15.6	10.4					
78009	16.3	18.3	1.1	25.1					
78010		8.9	-3.9	0.0					
78011	15.4	11.7	-2.8	0.0					
78012	7.2	19.4	1.7	0.0					
78013	10.9	20.0	13.3	27.9					
78014	11.4		3.3	0.0					
78015		7.8	-3.3	0.0					
78016	13.2	16.1	-3.9	0.0					
78017	10.4	21.7	9.4	4.8					
78018	15.0	21.7	6.7	0.0					
78019	0.6		8.9	71.9					
78020	4.3			6.9					
78021	10.4	10.0	1.1	0.0					
78022	13.4		1.1	0.0					
78023	6.6		7.8	0.0					
78024	10.7		5.6	0.0					
78025	7.4	26.1	16.7	0.0					
78026	17.1		6.1	5.6					
78027	7.4		0.0	0.0					
78028	15.9		-1.1	0.0					
78029	17.4		-4.4	0.0					
78030	16.2		-3.3	0.0					
78031	3.8	12.2	4.4	0.0					

AMDIE WEATHED (EILEW) - "LIEGA7801 W/TH") ΠΑΤΑ ΕΝΕ

Soil Data File

The soil file (FILES) contains data on the soil profile properties. These data are used in the soil water, nitrogen, phosphorus and root growth sections of the crop models. The file generally contains information that is available for the soil at a particular experimental site, and supplementary information extracted from a soil survey database for a soil of the same taxonomic classification as the soil at the experimental site. Occasionally, when a detailed soil analysis has been performed at the experimental site, the file will contain no information from a survey database.

In FILES, the first line of data contains the soil identifiers, information on soil texture and depth, a description that could equate to the soil classification according to a specified, locally used system (such as the Canadian soil classification system), and the country. The second line contains geographic data together with taxonomic information presented according to Soil Taxonomy (Soil Survey Staff, 1975). The third line contains information on soil properties that do not vary with depth, such as surface albedo, and on measurement techniques. The fourth line contains data on the first layer; the fifth line on the second layer, and so on for each succeeding layer in the soil profile. The second tier of information for the soil layers is optional and contains variables related to the soil phosphorus balance, and other nutrients. Soil organic carbon is included in this file because it is frequently used to compute other soil properties. The percentage of sand is assumed to be 100 minus the percentages of clay and silt, and thus is not included as an input. The number of layers, and the thickness of each layer should be the same as those in the soil analysis and initial conditions sections of the experiment file whenever possible. The file may contain properties for several soils of the same classification, providing each soil has its own code number. The data for each soil are simply appended to the file. The structure of the file and a truncated example are shown in Table 10.

The data in the soils file are arranged so that entries need be made only for the aspects simulated. For example, if only water aspects are to be simulated, only those variables described as physical characteristics need be supplied. If only water and nitrogen aspects are to be simulated, then the physical, N and pH variables need to be entered. If phosphorus is to be considered, then all these latter variables plus all P variables must be entered.

Input and Output Files • Input and

TABLE 10. SOIL DATA FILE. (FILES)

STRUCTURE			
Variable	Variable Name ¹	Header ²	Format ³
Line 1 *SOILS: Institute + country name			0 C 10 1 C 70
Subsequent lines relate to sections,	as follows:		
Line 1 Identifier (Institute + Site + Year + Source Texture, code ⁴ Depth, cm Description or local classification	Soil) PEDON SLSOUR SLTX SLDP SLDESC	ID_SOIL SLSOURCE SLTX SLDP SLDESCRIP	1 C 10 2 C 11 1 C 5 1 R 5 0 1 C 50
Line 2 Site name Country name Latitude Longitude Family, SCS system	SSITE SCOUNT SLAT SLONG TACON	SITE COUNTRY LAT LONG SCSFAMILY	1 C 11 1 C 11 1 R 8 3 1 R 8 3 1 C 50
Line 3			
<pre>Color, moist, Munsell hue Albedo, fraction Evaporation limit, cm Drainage rate, fraction day⁻¹ Runoff curve number (Soil Conservation Service) Mineralization factor, 0 to 1 scale Photosynthesis factor, 0 to 1 scale pH in buffer determination method, co Phosphorus, extractable, determination code⁴ Potassium determination method, code⁴</pre>	CN2 SLNF SLPF de ⁴ SMHB n SMPX	SCOM SALB SLU1 SLDR SLRO SLNF SLPF SMHB SMPX SMKE	$\begin{array}{cccccc} 1 & C & 5 & \\ 1 & R & 5 & 2 \\ 1 & R & 5 & 0 \\ 1 & R & 5 & 2 \\ 1 & R & 5 & 2 \\ 1 & R & 5 & 2 \\ 1 & C & 5 \\ 1 & C & 5 \\ 1 & C & 5 \end{array}$
<pre>Line 4 + (NL-1), where NL = number c (L = Layer number)</pre>	of layers.		
Depth, base of layer, cm Master horizon Lower limit, cm ³ cm ⁻³ Upper limit, drained, cm ³ cm ⁻³	ZLYR(L) MH(L) LL(L) DUL(L)	SLB SLMH SLLL SDUL	1 R 5 0 1 C 5 1 R 5 3 1 R 5 3

Upper limit, saturated, $cm^3 cm^{-3}$	SAT(L)	SSAT	1	R	5	3
Root growth factor, 0.0 to 1.0	SHF(L)	SRGF	1	R	5	2
Sat. hydraulic conductivity, macropore,						
$cm h^{-1}$	SWCN(L)	SSKS	1	R	5	1
Bulk density, moist, g cm ⁻³	BD(L)	SBDM	1	R	5	2
Organic carbon, %	OC(L)	SLOC	1	R	5	2
Clay (<0.002 mm), %	CLAY(L)	SLCL	1	R	5	1
Silt (0.05 to 0.002 mm), %	SILT(L)	SLSI	1	R	5	1
Coarse fraction (>2 mm), %	STONES(L)	SLCF	1	R	5	1
Total nitrogen, %	TOTN(L)	SLNI	1	R	5	2
pH in water	PH(L)	SLHW	1	R	5	1
pH in buffer	PHKCL(L)	SLHB	1	R	5	1
Cation exchange capacity, cmol kg ⁻¹	CEC(L)	SCEC	1	R	5	1

Line 4 + NL to (4 + NL + (NL - 1)), where NL = number of layers.

(L = Layer number)		-	
Depth, base of layer, cm	ZZLYR(L)	SLB	1 R 5 0
Phosphorus, extractable, mg kg ⁻¹	EXTP(L)	SLPX	1 R 5 1
Phosphorus, total, mg kg ⁻¹	TOTP(L)	SLPT	1 R 5 1
Phosphorus, organic, mg kg ⁻¹	ORGP(L)	SLPO	1 R 5 1
CaCO ₃ content, g kg ⁻¹	CACO(L)	SLCA	1 R 5 1
Aluminum	EXTAL(L)	SLAL	1 R 5 1
Iron	EXTFE(L)	SLFE	1 R 5 1
Manganese	EXTMN(L)	SLMN	1 R 5 1
Base saturation, cmol kg ⁻¹	TOTBAS(L)	SLBS	1 R 5 1
Phosphorus isotherm A, mmol kg ⁻¹	PTERMA(L)	SLPA	1 R 5 1
Phosphorus iostherm B, mmol kg ⁻¹	PTERMB(L)	SLPB	1 R 5 1
Potassium, exchangeable, cmol kg ⁻¹	EXK(L)	SLKE	1 R 5 1
Magnesium, cmol kg ⁻¹	EXMG(L)	SLMG	1 R 5 1
Sodium, cmol kg ⁻¹	EXNA(L)	SLNA	1 R 5 1
Sulfur	EXTS(L)	SLSU	1 R 5 1
Electric conductivity, seimen	SLEC(L)	SLEC	1 R 5 1

- ¹ Abbreviations used as variable names in the IBSNAT models.
- 2 Abbreviations suggested for use in header lines (those designated with '@') within the file.
- ³ Formats are presented as follows: number of leading spaces, variable type (Character = C, Real = R, Integer = I), variable width, and (if real) number of decimals.
- ⁴ For a complete listing of these codes, see Appendix B.

Input and Output Files • Input and

EXAMPLE SOIL DATA FILE. (FILES = "SOIL.SOL")

*SOIL INPUT FILE

*IBMZ91	0014	SCS		FSA	180	Millho	opper 1	Fine Sa	and						
@SITE		COUNTI	RY	I	LAT	LONG	SCS F	AMILY							
Gaines	sville	USA		29.	.63	-82.37	Loamy	,silic	,hypert	h Aren	ic Pal	eudult	(14)		
@ SCOM	SALB	SLU1	SLDR	SLRO	SLNF	SLPF	SMHB	SMPX	SMKE						
99	0.18	2.0	0.65	60.0	1.00	0.80	SA001	SA001	SA001						
@ SLB	SLMH	SLLL	SDUL	SSAT	SRGF	SSKS	SBDM	SLOC	SLCL	SLSI	SLCF	SLNI	SLHW	SLHB	SCEC
5	-99	0.026	0.096	0.230	1.000	-99	1.30	2.00	-99	-99	-99	-99	-99	-99	-99
15	-99	0.025	0.086	0.230	1.000	-99	1.30	1.00	-99	-99	-99	-99	-99	-99	-99
30	-99	0.025	0.086	0.230	0.800	-99	1.40	1.00	-99	-99	-99	-99	-99	-99	-99
60	-99	0.025	0.086	0.230	0.200	-99	1.40	0.50	-99	-99	-99	-99	-99	-99	-99
90	-99	0.028	0.090	0.230	0.100	-99	1.45	0.10	-99	-99	-99	-99	-99	-99	-99
120	-99	0.028	0.090	0.230	0.050	-99	1.45	0.10	-99	-99	-99	-99	-99	-99	-99
150	-99	0.029	0.130	0.230	0.002	-99	1.45	0.04	-99	-99	-99	-99	-99	-99	-99
180	-99	0.070	0.258	0.360	0.000	-99	1.20	0.24	-99	-99	-99	-99	-99	-99	-99

Genotype

Three files are suggested for dealing with the morphological and physiological characteristics of a particular genotype: one for the specific species (crop) characteristics (FILEG), one for the "ecotype" characteristics within a species (FILEE), and one for the specific cultivar characteristics within an ecotype grouping (FILEC).

These files would contain all genotype specific inputs required for simulation. Their content and organization, and indeed their usage, currently vary greatly among crop models and crops. No attempt has been made, therefore, to document contents. The use of at least one genotype file, specifically FILEC, is highly recommended. For such a file, a standard format is recommended with each line beginning with 6 spaces for a cultivar identification code (the first two items should be the code for the Institute that assigned the number), a blank, 16 spaces for the cultivar name, a blank, 6 spaces for a type identifier (e.g., an identifier for highland or lowland bean ecotypes), and then data in a (1X, F5.?) format (i.e., 1 blank, followed by 5 spaces for a real variable with the required number of decimals).

CHAPTER FOUR. OUTPUTS

A number of output files for each simulation run, which may encompass several experiments, are described in Table 1. The first output file, OVERVIEW.OUT (Table 11), provides an overview of input conditions and crop performance, and a comparison with actual data if available. The first section in this file presents information that uniquely describes the simulated data set, as described below.

- Line 1: Run number and description; default to experiment code and name plus treatment number and name
- Line 2: Model name and version
- Line 3: Experiment name, Institute code, Site code, Experiment no., Crop (group) code
- Line 4: Treatment number and specifications
- Line 5: Crop, cultivar, ecotype
- Line 6: Simulation starting date
- Line 7: Planting date, population, and row spacing
- Line 8: Weather location, site and year
- Line 9: Soil number, texture and family
- Line 10: Soil initial conditions
- Line 11: Water balance
- Line 12: Irrigation
- Line 13: Nitrogen balance
- Line 14: Fertilizer N applications
- Line 15: Residue applications
- Line 16: Environmental options
- Line 17: Simulation options
- Line 18: Management options

The second section contains a summary of soil characteristics and cultivar coefficients. The next section deals with the crop and soil status at the main developmental stages, followed by a comparison of simulated and measured data for major variables. This in turn is followed by information on simulated stress factors and weather data summary during the different developmental phases (as appropriate to the crop). An example of the file is shown in Table 11. The second output file, SUMMARY.OUT (Table 12), provides a summary of outputs for use in applications programs with one line of data for each crop season. The third to last files contain detailed simulation results, including simulated seasonal (at daily or less frequent intervals) growth and development (Table 13), carbon balance (Table 14), water balance (Table 15), nitrogen balance (Table 16), phosphorus balance and pest (Table 17) aspects. These files are included for detailed graphic and numerical comparisons of simulated results with data collected periodically during a growing season. They can be saved in files named according to the code of the first experiment in the simulation session, but with a final letter to indicate the aspect dealt with in the file.

All of the above output files are set up so that successive simulated results in one session are appended to the respective files. The output files are temporary information transfer files, created during simulation, and they are overwritten when a new simulation session is started. The output files can include additional information such as may relate to parameter changes for sensitivity analysis. However, the symbol "!" should be put in column 1 when such additional information is included in the output files. The "!" symbol designates a comment and graphics and other analysis programs must be designed to ignore these lines.

Input and Output Files • Input and

TABLE 11. EXAMPLE OF THE SIMULATION OVERVIEW FILE. (OUTO)

*SIMULATION OVERVIEW FILE

MODEL EXPERIMENT	:	IRRIGATED, COBB CRGR0940 – SOYBEAN UFGA8101 SB COBB, IRRIGATED, VEG. & REPROD. STRESS IRRIGATED, COBB
CROP	:	SOYBEAN CULTIVAR : COBB - MATURITY GROUP 8
STARTING DATE	:	JUN 26 1981
PLANTING DATE	:	JUN 26 1981 PLANTS/m2 : 35.9 ROW SPACING : 76.cm
WEATHER	:	UFGA 1981
SOIL	:	IBSB910015 TEXTURE : - Millhopper Fine Sand
SOIL INITIAL C	:	DEPTH:180cm EXTR. H2O:158.4mm NO3: .0kg/ha NH4: .0kg/ha
WATER BALANCE	:	IRRIGATE ACCORDING TO FIELD SCHEDULE
IRRIGATION	:	315 mm IN 19 APPLICATIONS
NITROGEN BAL.	:	SOIL-N, N-UPTAKE & DYNAMIC N-FIXATION SIMULATION
N FERTILIZER	:	0 kg/ha IN 0 APPLICATIONS
RESIDUE/MANURE	:	0 kg/ha IN 0 APPLICATIONS
ENVIRONM. OPT.	:	DAYL= .0 SRAD= .0 TMAX= .0 TMIN= .0
		RAIN= .0 CO2 = R 330.0 DEW = .0 WIND= .0
SIMULATION OPT	:	WATER :Y NITROGEN:Y N-FIX:Y PESTS :N PHOTO :C ET :R
MANAGEMENT OPT	:	PLANTING:R IRRIG :R FERT :R RESIDUE:R HARVEST:M WTH:M

*SUMMARY OF SOIL AND GENETIC INPUT PARAMETERS

	LOWER LIMIT	-	SAT SW	EXTR SW	INIT SW	ROOT DIST	BULK DENS	рН	NO3	NH4	ORG C	
cm	cm cm3/cm3		cm3/cm3	cm3/cm3			g/cm3		ugN/g	ugN/g	90 	
0- 5	.023	.086	.230	.063	.086	1.00	1.36	5.30	.00	.00	.90	
5- 15	.023	.086	.230	.063	.086	1.00	1.40	5.40	.00	.00	.69	
15- 30	.023	.086	.230	.063	.086	.50	1.46	5.70	.00	.00	.28	
30- 45	.023	.086	.230	.063	.086	.29	1.47	5.80	.00	.00	.20	
45- 60	.023	.086	.230	.063	.086	.29	1.47	5.80	.00	.00	.20	
60- 90	.021	.076	.230	.055	.076	.38	1.43	5.90	.00	.00	.09	
90-120	.020	.076	.230	.056	.076	.13	1.48	5.90	.00	.00	.03	
120-150	.027	.130	.230	.103	.130	.06	1.57	5.90	.00	.00	.03	
150-180	.070	.258	.360	.188	.258	.03	1.79	5.90	.00	.00	.03	
TOT-180	5.5	21.4	45.3	15.8	21.4	<cm< td=""><td>- kg</td><td>/ha></td><td>.0</td><td>.0</td><td>38949</td></cm<>	- kg	/ha>	.0	.0	38949	
SOIL AL	BEDO	: .1	.8	EVAP	ORATIO	N LIMIT	: 5.00	: 5.00		MIN. FACTOR : 1.00		
RUNOFF (CURVE	# :66.0	00	DRAINAGE RATE		: .50		FERT.	FACTOR	: .84		

 SOYBEAN CULTIVAR :IB0002-COBB
 ECOTYPE :SB0801-MATURITY GROUP 8

 CSDVAR :12.25
 PPSEN : .33
 EMG-FLW:21.00
 FLW-FSD:16.00
 FSD-PHM :37.00

 WTPSD : .180
 SDPDVR : 2.05
 SDFDUR :23.00
 PODDUR :15.00
 XFRUIT : 1.00

*SIMULATED CROP AND SOIL STATUS AT MAIN DEVELOPMENT STAGES

RUN NO. 1 IRRIGATED, COBB

	DATE	CROP	GROWTH BI	OMASS	LAI	LEAF	ΕT	RAIN	IRRIG	SWATER	CROP N	STRESS
		AGE	STAGE	kg/ha		NUM.	mm	mm	mm	mm	kg/ha 🖇	H20 N
26	JUN	0	START SIM	0	.00	.0	4	18	0	172	0.0	.00 .00
26	JUN	0	SOWING	0	.00	.0	4	18	0	172	0.0	.00 .00
29	JUN	3	EMERGENCE	25	.04	.0	5	19	0	162	1 5.1	.00 .00
29	JUN	3	END JUVEN.	25	.04	.0	5	19	0	162	1 5.1	.00 .00
7	JUL	11	UNIFOLIATE	81	.13	1.3	13	19	8	158	3 3.4	.00 .00
11	JUL	15	FLOWER IND	143	.25	2.3	25	41	8	161	4 3.0	.07 .00
11	AUG	46	FIRST FLWR	2630	4.45	11.1	165	141	85	157	96 3.7	.02 .00
27	AUG	62	FIRST POD	4320	5.41	15.5	230	165	142	157	153 3.6	.00 .00
27	AUG	62	FIRST POD	4320	5.41	15.5	230	165	142	157	153 3.6	.00 .00
29	AUG	64	END MSNODE	4337	5.20	16.1	235	192	142	180	155 3.6	.00 .00
5	SEP	71	END LEAF	5163	5.06	16.1	265	219	142	147	175 3.4	.00 .00
7	SEP	73	FIRST SEED	5355	4.96	16.1	272	221	157	153	179 3.3	.00 .00
8	OCT	104	END POD	7978	3.30	16.1	397	248	272	142	269 3.4	.00 .00
18	OCT	114	PHYS. MAT	8658	3.03	16.1	429	250	287	124	302 3.5	.00 .04
30	OCT	126	HARV. MAT	7340	.20	16.1	456	268	315	134	264 3.6	.00 .16
30	OCT	126	HARVEST	7340	.20	16.1	456	268	315	134	264 3.6	.00 .16

*MAIN GROWTH AND DEVELOPMENT VARIABLES

@	VARIABLE	PREDICTED	MEASURED
	ANTHESIS DATE (DAP)	46	47
	FIRST PEG / POD (DAP)	62	66
	FIRST SEED (DAP)	73	66
	PHYSIOLOGICAL MATURITY (DAP)	114	118
	POD YIELD (kg/ha)	4545	4526.
	SEED YIELD (kg/ha)	3575	3502.
	SHELLING PERCENTAGE (%)	78.65	-99
	WEIGHT PER SEED (g)	.165	.1476
	SEED NUMBER (SEED/m2)	2166	2374.
	SEEDS/POD	2.05	1.88
	MAXIMUM LAI (m2/m2)	5.41	6.25
	BIOMASS (kg/ha) AT ANTHESIS	2630	-99
	BIOMASS N (kg N/ha) AT ANTHESIS	96	-99

BIOMASS (kg/ha) AT HARVEST MAT.	7340	6851.
STALK (kg/ha) AT HARVEST MAT.	2712	2137.
HARVEST INDEX (kg/kg)	.487	-99
FINAL LEAF NUMBER (MAIN STEM)	16.10	-99
SEED N (kg N/ha	228	-99
BIOMASS N (kg N/ha)	264	-99
STALK N (kg N/ha)	21	-99
SEED N (%)	6.37	-99

*ENVIRONMENTAL AND STRESS FACTORS

	STRESS								
DEVELOPMENT PHASE	WA	TER	-NITF	ROGEN-					
	DURA	TEMP	TEMP	SOLAR	PHOTOP	рното	GROWTH	PHOTO	GROWTH
	TION	MAX	MIN	RAD	[day]	SYNTH		SYNTH	
	days	oC	oC	MJ/m2	hr				
Emergence -First Flower	43	34.07	22.26	20.01	13.60	.000	.019	.000	.000
First Flower-First Seed	27	32.41	21.98	16.30	12.80	.000	.000	.000	.000
First Seed - Phys. Mat.	41	30.87	17.54	16.38	11.78	.000	.000	.049	.009
Emergence - Phys. Mat.	111	32.48	20.45	17.77	12.73	.000	.007	.018	.003
						(0.0 =	Minim	um Stre	ess
						1.0 =	Maxim	um Stre	ess)

SOYBEAN	YIELD :	3575 kg/ha	[DRY WEIGHT]
---------	---------	------------	--------------

TABLE 12. DETAILED SIMULATION SUMMARY OUTPUT FILE. (OUTS)

STRUCTURE

STRUCTURE		
Variable	Variable Name 1 Header 2	Format ³
Line 1		
*SUMMARY :		0 C 10
Institute code	INSTE	1 C 2
Site code	SITEE	0 C 2
Experiment code	EXPTNO	0 C 4
Crop group code	CROP	1 C 2
Experiment name	ENAME	1 C 60
Line 2 to number runs made. Details	of each simulation run,	as follows:
Run number	RUNO RP	0 I 2
Treatment number	TRTNO TN	1 I 2
Rotation component	ROTNO R	1 I 1
Rotation option	ROTOPT O	0 I 1
Crop component	CRPNO C	0 I 1
Crop code	CROP CR	1 C 2
Title	TITLET TNAM	1 C 19
Field identifier	FLDNAM FNAM	1 C 8
Simulation start date, year + day of y		1 I 5
Planting date, year + day of year	YRPLT PDAT	1 I 5
Anthesis date, start, year + day of year		1 I 5
Maturity (physiological) date, year+da		1 1 5
of year	YRNR7 MDAT	1 I 5
Harvest date, year + day of year	YRDOY HDAT	1 I 5
Planting material dry weight, kg ha ⁻¹	SDRATE DWAP	1 I 5
Canopy dry weight at maturity, kg ha ⁻¹	TOPWT CWAM	1 I 5
Yield at maturity, kg ha ⁻¹	SDWT HWAM	1 I 5
Yield at harvest, kg ha ^{-1}	SDWTAM HWAH	1 I 5
Harvested byproduct dry weight, kg ha	1 BWAH BWAH	1 I 5
Harvest product individual dry wt., mg		1 I 5
Harvest product number per m ² at matur		1 I 5
Harvest product number per unit at mat	-	1 R 5 2
Irrigation applications, number	NAP IR#M	1 I 5
Irrigation applied, cumulative, mm	TOTIR IRCM	1 I 5
Precipitation cumulative, mm	CRAIN PRCM	1 I 5
Evapotranspiration in season,		
cumulative, mm	CET ETCM	1 I 5
Runoff, cumulative, mm	TRUNOF ROCM	1 I 5
Cumulative drainage from profile, mm	TDRAIN DRCM	1 I 5
Water remaining in soil, available, mm	PESW SWXM	1 I 5
Nitrogen applications, number	NAPNIT NI#M	1 I 5
Nitrogen applied, cumulative, kg ha ^{-1}	AMTNIT NICM	1 I 5

					_
Nitrogen fixed, cumulative, kg ha ^{-1}	WTNFX	NFXM	1	Ι	5
Total N uptake during season, kg/ha	WTNUP	NUCM	1	Ι	5
Nitrogen leached, cumulative, kg ha ⁻¹	TLCH	NLCM	1	Ι	5
Inorganic N in soil at maturity, kg/ha	TSIN	NIAM	1	Ι	5
Tops N at maturity, kg ha ⁻¹	WTNCAN	CNAM	1	Ι	5
Nitrogen in harvest product (seed), kg ha ⁻¹	WTNSD	GNAM	1	Ι	5
Residue, etc. applied, cumulative, kg ha ⁻¹	CRESAP	RECM	1	Ι	5
Soil organic N at end of season, kg ha ^{-1}	TSON	ONAM	1	Ι	5
Soil C at end of season, t ha ^{-1}	TSOC	OCAM	1	Ι	5
Number of phosphorus applications	NNAPHO	PO#M	1	Ι	5
Total P applied during season, kg/ha	TOTPH	POCM	1	Ι	5
Cumulative plant P uptake, kg/ha	TOTPUP	CPAM	1	Ι	5
Soil P at end of season, kg/ha	TPLEFT	SPAM	1	Ι	5

 1 $\,$ Abbreviations used as variable names in the IBSNAT models.

 2 Abbreviations suggested for use in header lines (those designated with '@') within the file.

³ Formats are presented as follows: number of leading spaces, variable type (Character = C, Real = R, Integer = I), variable width, and (if real) number of decimals.

EXAMPLE SUMMARY OUTPUT FILE

*SUMMARY : UFGA8101 SB COBB, IRRIGATED, VEG. & REPROD. STRESS

!IDE	ENTI	IFIEF	RS					DATES			• • • • • • •		
@RP	TN	ROC	CR	TNAM			FNAM	SDAT	PDAT	ADAT	MDAT	HDAT	
1	1	110	SB	IRRIGATED,	COBB		UFGA0001	81177	81177	81223	81291	81303	
2	2	110	SB	IRRIGATED,	WITH	VEG	UFGA0001	81177	81177	81224	81293	81305	
3	3	110	SB	IRRIGATED,	WITH	REP	UFGA0001	81177	81177	81223	81291	81303	
1	1	110	SB	IRRIGATED			UFGA0001	78166	78166	78211	78282	78294	
2	2	110	SB	NON - IRRIG	GATED		UFGA0001	78166	78166	78211	78278	78290	

DRY W	EIGHTS						
DWAP	CWAM	HWAM	HWAH	BWAH	HWUM	H#AM	H#UM
81	7340	3575	3575	3765	165	2166	2.05
81	6178	3174	3174	3004	157	2021	2.05
81	7038	3389	3389	3649	159	2126	2.05
75	6116	2962	2962	3153	134	2208	2.05
75	3056	1139	1139	1917	145	784	2.05

WATER						
IR#M	IRCM	PRCM	ETCM	ROCM	DRCM	SWXM
19	315	268	456	0	72	134
13	206	269	424	0	36	121
15	264	268	448	0	72	104
19	190	534	440	31	290	74
0	0	534	319	31	284	59

NITROGEN									
NI#M	NICM	NFXM	NUCM	NLCM	NIAM	CNAM	GNAM		
0	0	352	2	0	32	264	228		
0	0	322	1	0	29	234	202		
0	0	342	1	0	31	252	216		
0	0	314	4	20	39	222	189		
0	0	204	2	20	37	96	73		

ORGAN	IC MAT	TER	PHOSP	HORUS.		
RECM	ONAM	OCAM	PO#M	POCM	CPAM	SPAM
0	3870	39	0	0	0	0
0	3873	39	0	0	0	0
0	3873	39	0	0	0	0
1000	3838	39	0	0	0	0
1000	3842	39	0	0	0	0

TABLE 13. DETAILED SIMULATION GROWTH OUTPUT FILE. (OUTG)

STRUCTURE

Variable	Variable Name ¹	Header	2 _{For}	ma	t ³
Line 1					
Run number ⁴	NREP		5	I	3
Run identifier	TITLER		1 0	С	25
Line 2					
Model name	MODEL		18	С	8
Crop name	CROPD		3	С	10
Line 3					
Experiment identifier, made up of	:				
Institute code	INSTE		18	С	2
Site code	SITEE		0	С	2
Experiment number/abbreviation	EXPTNO		0	С	
Crop group code	CROP		1	С	2
Experiment name (Treatment set and	1				
experimental condition names,					
separated by a semi-colon)	ENAME		18	С	60
Line 4					
			1 1	-	2
Treatment number	TRTNO		11	I	2
Treatment name	TITLET		5	C	25
Line 5 ⁵					
Variable abbreviations			1	С	77+
Line 6 on					
Date (Year + days from Jan. 1)	YRDOY	DATE	1	I	5
Crop age (days from planting)	DAP	CDAY	1	I	5
Leaf number	VSTAGE	L#SD	1	R	5 1
Growth stage	RSTAGE	GSTD	1	I	5
Leaf area index	XLAI	LAID	1	R	52
Leaf dry weight, kg ha ⁻¹	WTLF	LWAD	1	I	5
Stem dry weight, kg ha ⁻¹	STMWT	SWAD	1	I	5
Grain dry weight, kg ha ⁻¹	SDWT	GWAD	1	I	5
Root dry weight in layer L, kg ha	-1 RTWT	RWAD	1	I	5
Crop dry weight, kg ha- ¹	TOPWT	CWAD	1	I	5
Grain number, $\#/m^2$	SEEDNO	G#AD	1	I	5
Grain dry weight, mg/grain	SDSIZE	GWGD	1	R	5 1
Harvest index	HI	HIAD	1	R	53

- ¹ Abbreviations used as variable names in the IBSNAT models.
- ² Abbreviations suggested for use in header lines (those designated with '@') within the file. They correspond to the variable names used in the associated database.
- ³ Formats are presented as follows: number of leading spaces, variable type (Character = C, Real = R, Integer = I), variable width, and (if real) number of decimals.
- ⁴ Each new run should be demarcated with '*RUN' at the beginning of this line in each file.
- ⁵ Additional information can be placed between lines 4 and 5, as required by a user, as illustrated in the example, and as documented for the Overview file in the text.

Input and Output Files • Input and O

EXAMPLE GROWTH OUTPUT FILE

*GROWTH ASPECTS OUTPUT FILE

 *RUN 1 : IRRIGATED, COBB MODEL : CRGR0940 - SOYBEAN EXPERIMENT : UFGA8101 SB COBB, IRRIGATED, VEG. & REPROD. STRESS TREATMENT 1 : IRRIGATED, COBB 												
CROP	NG DAT		SOYBEAN JUN 26		CULI	IVAR :	COBB			- MAT	URITY	GROUP 8
	NG DAI		JUN 26			ттс /m ว	: 35.9	р	OW SPA	OTNO .	76	- m
WEATHE			UFGA	1981	PLAN	115/1112	• 55.9	K	OW SPA	cing .	/0.0	
SOIL	11		IBSB910		TEXT	TIRE :		– Mill	honner	Fine	Sand	
	NTTTAL.		DEPTH:1									.0kg/ha
			IRRIGAT						. 0119/		-	• •119/11a
IRRIGA				.5 mm I			ICATIO					
NITROG	EN BAL	. :	SOIL-N,	N-UPT					SIMUL	ATION		
N FERT	ILIZER	:		0 kg/h	a IN	0 A	PPLICA	TIONS				
RESIDU	E/MANU	RE :		0 kg/h	a IN	0 A	PPLICA	TIONS				
ENVIRO	NM. OP	т. :	DAYL=	.0	SRAD)=	.0 т	MAX=	.0	TMIN	·=	.0
			RAIN=	.0	C02	= R 33	0.0 D	EW =	.0	WIND	=	.0
			WATER		ITROGE	N:Y N	-FIX:Y	PEST	S :N	PHOTO	:C	ET :R
MANAGE	MENT O	PT :	PLANTIN	IG:R I	RRIG	R F	'ERT :R	RESI	DUE:R	HARVE	ST:M	WTH:M
~ D 3 mm	CDAU	T II OD	aamp			GUID	GUAD	DUID	GUAD		auap	
@DATE 81177	CDAY 0	L#SD .0		LAID .00	LWAD 0	SWAD 0	GWAD 0	RWAD 0	CWAD 0	G#AD 0	GWGD	HIAD .000
81183	6	.0		.00	35	6	0	23	41	0	.0	
81189	12	1.6		.16	35 77	15	0	44	92	0	.0	
81195	18	3.1		.40	173	46	0	98	219	0	.0	
81201	24	4.9		.95	313	134	0	192	447	0	.0	
81207	30	6.5		1.75	533	324	0	381	858	0	.0	
81213	36	8.2		2.82	801	613	0	567	1414	0	.0	
81219	42	9.9		3.84	1080	1047	0	753	2127	0	.0	.000
81225	48	11.7	1	4.73	1325	1560	0	905	2885	0	.0	.000
81231	54	13.4	. 1	5.32	1540	2078	0	1051	3619	0	.0	.000
81237	60	15.0	1	5.39	1618	2473	0	1161	4091	0	.0	.000
81243	66	16.1	. 3	5.15	1658	2859	0	1264	4533	0	.0	.000
81249	72	16.1	. 3	4.99	1760	3303	0	1366	5232	0	.0	.000
81255	78	16.1	. 5	4.71	1799	3625	34	1437	5897	403	8.4	.006
81261	84	16.1	. 5	4.31	1699	3648	298	1429	6425	950	31.4	.046
81267	90	16.1	. 5	3.97	1578	3523	777	1402	6901	1453	53.5	.113
81273	96	16.1	-	3.63	1425	3315	1544	1333	7364	2106	73.3	
81279	102	16.1	. 5	3.37	1318	3182	2331	1280	7868	2166	107.6	.296

TABLE 14. DETAILED SIMULATION CARBON BALANCE OUTPUT FILE. (OUTC)

STRUCTURE		
Variable	Variable Name ¹ Head	er ² Format ³
Line 1 Run number ⁴	NREP	5 I 3
Run identifier	TITLER	10 C 25
Line 2	NODEL	10 0 0
Model name Crop name	MODEL CROPD	18 C 8 3 C 10
Line 3		
Experiment identifier, made up of: Institute code	INSTE	18 C 2
Site code	SITEE	0 C 2
Experiment number/abbreviation	EXPTNO	0 C 4
Crop group code	CROP	1 C 2
Experiment name (Treatment set and		
experimental condition names,		
separated by a semi-colon)	ENAME	18 C 60
Line 4		
Treatment number	TRTNO	11 I 2
Treatment name	TITLET	5 C 25
Line 5 ⁵		
Variable abbreviations		1 C 77+
Line 6 on		
Date (Year + days from Jan. 1)	YRDOY DAT	-
Days from planting	DAP CDA	-
Soil organic carbon, kg ha ⁻¹	TSOC SOC	
Total plant weight, kg ha ⁻¹	TOTWT TWA	
Canopy interception of PAR, %	PCINP LIS	
Canopy gross photosynthesis, g $CH_2O/m^2/d$	PG PH	
Carbon mobilized for growth, $g CH_2^2 O/m^2/d$		
Canopy growth rate, g tissue/ m^2/d^2	GROWTH CGI	
Canopy growth resp, g CH ₂ O/m ² /d Canopy maint resp, g CH ₂ O/m ² /d	GRWRES GRA	
Canopy maint resp, g $CH_2O/m^2/d$ C stored in a day, g $CH_2O/m^2/d$	MAINR MRA CAD CHA	
Percent C in leaf, %	RHOL CL ²	
Percent C in stem, %	RHOL CL ⁴	

¹ Abbreviations used as variable names in the IBSNAT models.

- 2 Abbreviations suggested for use in header lines (those designated with '@') within the file. They correspond to the variable names used in the associated database.
- ³ Formats are presented as follows: number of leading spaces, variable type (Character = C, Real = R, Integer = I), variable width, and (if real) number of decimals.
- ⁴ Each new run should be demarcated with `*RUN' at the beginning of this line in each file.
- ⁵ Additional information can be placed between lines 4 and 5, as required by a user, as illustrated in the example, and as documented for the Overview file in the text.

EXAMPLE CARBON OUTPUT FILE

*CARBON BALANCE OUTPUT FILE

*RUN 1		:	IRRIGAT	ED, CO	OBB							
MODEL		:	CRGR093	0 - S0	OYBEAN							
EXPERIMEN	NT	:	UFGA810	1 SB	COB	B, IRR	IGATED	, VEG.	& REPR	OD. ST	FRESS	
TREATMEN	г 1	:	IRRIGAT	ED, CO	OBB							
CROP		:	SOYBEAN		CUL	TIVAR	: COBB			- MAT	FURITY	GROUP 8
STARTING	DATE	:	JUN 26	1981								
PLANTING	DATE	:	JUN 26	1981	PLA	NTS/m2	: 35.	9 R	OW SPA	CING	: 76.0	cm
WEATHER			FGA 1									
SOIL		:	IBSB910	015	TEX	TURE :		- Mill	hopper	Fine	Sand	
SOIL INI	TIAL C	:	DEPTH:1	80cm 1	EXTR. 1	H2O:15	8.4mm	NO3:	.0kg/	ha NH	14:	.0kg/ha
WATER BAI	LANCE	:	IRRIGAT	E ACCO	ORDING	TO FI	ELD SC	HEDULE				
IRRIGATI	ON	:	31	5 mm 1	IN	19 APP	LICATI	ONS				
NITROGEN	BAL.	:	SOIL-N,	N-UP:	FAKE &	DYNAM	IC N-F	IXATION	SIMUL	ATION		
N FERTIL	IZER	:		0 kg/ł	na IN	0	APPLIC.	ATIONS				
RESIDUE/N	MANURE	:		0 kg/ł	na IN	0	APPLIC.	ATIONS				
ENVIRONM	. OPT.	:	DAYL=	. () SRA	D=	.0	TMAX=	.0	IIMT (N=	.0
			RAIN=	. (CO2	= R 3	30.0	DEW =	.0	WINI)=	.0
SIMULATI	ON OPT	:	WATER	:Y 1	NITROG	EN:Y	N-FIX:	Y PEST	s :N	PHOTO) :C	ET :R
MANAGEMEI	NT OPT	:	PLANTIN	G:R I	IRRIG	R	FERT :	R RESI	DUE:R	HARVI	EST:M	WTH:M
@DATE CI	DAY SO	CD	TWAD	LI%D	PHAD	CMAD	CGRD	GRAD	MRAD	CHAD	CL%D	CS%D
81177	0	39	0	.00	.00	.00	.00	.00	.00	.00	.00	.00
81183	6	39	64	.00	1.25			.34			20.39	
81189	12	39	136	.00	2.81	.00	1.34	.79	.32	.35	29.76	27.58
81195	18	39	317	.00	6.96	.00	3.29	1.96	.80	.91	34.23	26.99
81201	24	39	638	.00	12.21	.28	7.40	3.75	1.34	.00	21.66	15.14
81207	30	39	1238	.00	21.69	.32	12.36	6.77	2.88	.00	12.12	9.59
81213	36	39	1981	.00	24.45	.37	14.46	6.91	3.44	.00	7.96	7.74
81219	42	39	2880	.00	29.19	.45	17.39	7.99	4.26	.00	5.88	6.86
81225	48	39	3789	.00	28.61	.55	16.32	7.60	4.77	.47	4.84	6.75
81231	54	39	4670	.00	28.54	.76	15.15	7.17	5.58	1.40	4.78	8.30
81237	60	39	5252	.00	31.56	1.00	16.14	8.17	5.44	2.81	5.16	10.40
81243	66	39	5797	.00	28.12	1.38	13.45	6.64	5.90	3.52	5.87	12.99
81249	72	39	6598	.00	24.16	1.99	11.82	4.98	6.27	3.08	6.79	16.00
81255	78	39	7334	.00	32.67	2.70	17.69	6.55	7.48	3.66	7.26	17.61
81261	84	39	7854	.00	31.39	3.11	19.23	8.03	5.14	2.10	7.11	17.31
81267	90	39	8304	.00	28.86	2.99	16.24	8.33	7.29	.00	6.10	14.90
	96	39	8697	.00	29.56	2.18	14.43	9.89		.15		12.28
81279	102	39	9148	.00	27.81	1.84	13.59	10.00	5.58	.49	4.12	10.21
81285	108	39	9393	.00	23.47	1.34	11.40	8.67	4.41	.34	3.04	7.65
81291	114	39	9860	.00	20.92	.00	2.93	2.05	5.48	10.46	3.56	9.62
81297	120	39	8922	.00	5.92	1.97	2.33	1.05	3.88	.63	1.12	18.71

TABLE 15. DETAILED SIMULATION WATER BALANCE OUTPUTFILE. (OUTW)

STRUCTURE

Variable	Variable Name ¹	Header ²	For	mat	3
Line 1					
Run number ⁴	NREP		5	I	3
Run identifier	TITLER		10	С	25
Line 2					
Model name	MODEL		18	С	8
Crop name	CROPD		3	С	10
Line 3					
Experiment identifier, made up of:					
Institute code	INSTE		18	С	2
Site code	SITEE		0	С	2
Experiment number/abbreviation	EXPTNO		0	С	4
Crop group code	CROP		1	С	2
Experiment name (Treatment set and					
experimental condition names,					
separated by a semi-colon)	ENAME		18	С	60
Line 4					
Treatment number	TRTNO		11	I	2
Treatment name	TITLET		5	С	25
Line 5 ⁵					
Variable abbreviations			1	С	77+
Line 6 on					
Date (Year + days from Jan. 1)	YRDOY	DATE	1	I	5
Days from planting	DAP	CDAY	1	I	5
Plant Transpiration, mm d^{-1}	AVEP	EPAA	1	R	52
Evapotranspiration, mm day ⁻¹	AVET	ETAA	1	R	52
Potential evaporation, mm day $^{-1}$	AVEO	EOAA	1	R	52
Potentially extractable water, cm	PESW	SWXD	1	R	5 1
Cumulative runoff	TRUNOF	ROFC	1	R	5 1
Cumulative drainage	TDRAIN	DRNC	1	I	5
Cumulative precipitation, mm	CRAIN	PREC	1	I	5
Cummulative irrigation, mm	TOTIR	IRRC	1	I	5
Average solar radiation, MJ m $^{-2}$	AVSRAD	SRAA	1	R	5 1
Average maximum temperature, °C	AVTMX	TMXA	1	R	5 1
Average minimum temperature, °C	AVTMN	TMNA	1	R	5 1

- ¹ Abbreviations used as variable names in the IBSNAT models.
- ² Abbreviations suggested for use in header lines (thoses designated with '@') within the file. They correspond to the variable names used in the associated database.
- ³ Formats are presented as follows: number of leading spaces, variable type (Character = C, Real = R, Integer = I), variable width, and (if real) number of decimals.
- ⁴ Each new run should be demarcated with '*RUN' at the beginning of this line in each file.
- ⁵ Additional information can be placed between lines 4 and 5, as required by a user, as illustrated in the example, and as documented for the Overview file in the text.

EXAMPLE WATER OUTPUT FILE

*WATER BALANCE OUTPUT FILE

*RUN 1 : IRRIGATED, COBB MODEL : CRGR0940 - SOYBEAN EXPERIMENT : UFGA8101 SB COBB, IRRIGATED, VEG. & REPROD. STRESS TREATMENT 1 : IRRIGATED, COBB CROP : SOYBEAN CULTIVAR : COBB - MATURITY GROUP 8 STARTING DATE : JUN 26 1981 PLANTING DATE : JUN 26 1981 PLANTS/m2 : 35.9 ROW SPACING : 76.cm WEATHER : UFGA 1981 TEXTURE : SOIL : IBSB910015 - Millhopper Fine Sand SOIL INITIAL C : DEPTH:180cm EXTR. H20:158.4mm NO3: .0kg/ha NH4: .0kg/ha WATER BALANCE : IRRIGATE ACCORDING TO FIELD SCHEDULE 315 mm IN IRRIGATION : 19 APPLICATIONS NITROGEN BAL. : SOIL-N, N-UPTAKE & DYNAMIC N-FIXATION SIMULATION N FERTILIZER : 0 kg/ha IN 0 APPLICATIONS RESIDUE/MANURE : 0 kg/ha IN 0 APPLICATIONS .0 SRAD= ENVIRONM. OPT. : DAYL= .0 TMAX= .0 TMIN= . 0 RAIN= .0 CO2 = R 330.0 DEW = .0 WIND= .0 SIMULATION OPT : WATER :Y NITROGEN:Y N-FIX:Y PESTS :N PHOTO :C ET :R MANAGEMENT OPT : PLANTING:R IRRIG R FERT R RESIDUE:R HARVEST:M WTH:M @DATE CDAY EPAA ETAA EOAA SWXD ROFC DRNC PREC IRRC SRAA TMXA TMNA 81177 0 .00 3.92 7.37 172.3 .0 .0 18 0 25.2 36.1 21.7 .0 12.5 32.8 81183 6 .27 1.44 5.61 161.1 19 8 22.2 19.2 81189 12 .53 2.05 5.35 166.7 .0 13.2 33 8 19.6 34.8 21.73.88 5.83 169.7 .0 20.5 81195 18 1.47 8 21.5 34.8 63 22.2 29.6 81201 24 1.97 2.62 3.73 156.2 .0 73 8 14.5 33.7 21.9 .0 29.6 81207 30 5.20 5.55 74 27 23.6 35.9 22.2 6.62 143.9 81213 36 2.60 3.93 3.93 161.6 .0 29.6 94 66 15.6 33.9 21.9 4.05 5.20 5.20 163.5 21.0 33.3 22.0 81219 42 .0 40.1 137 66 81225 48 4.45 5.26 5.26 151.2 .0 41.6 145 85 21.1 33.3 22.2 .0 41.6 81231 54 3.93 4.25 4.25 139.8 146 104 17.1 33.3 23.1 81237 60 4.00 4.44 4.44 151.6 .0 42.1 165 123 18.2 32.6 21.9 66 3.18 3.59 3.59 197.7 14.8 31.7 81243 .1 44.2 219 142 21.9 81249 72 3.44 3.76 3.76 156.2 .1 71.5 220 157 15.4 32.6 21.9 81255 78 4.00 4.56 4.56 148.9 .1 71.5 230 170 18.6 33.1 21.7 81261 84 2.52 2.99 2.99 152.2 .1 71.5 247 183 12.9 30.0 20.2 81267 90 3.69 4.25 4.25 143.1 .1 71.5 247 202 17.8 32.0 19.4 96 3.78 .1 71.5 32.2 81273 4.51 4.51 139.5 247 230 18.9 18.3 81279 102 3.45 3.76 3.76 129.6 .1 71.5 247 249 16.3 30.9 15.9 .1 71.5 108 2.46 2.78 2.78 133.5 250 272 81285 12.0 29.8 18.9 81291 114 3.22 3.76 3.76 123.6 .1 71.5 250 287 16.9 30.7 11.9 81297 120 1.63 2.77 2.89 129.2 .1 71.5 254 315 12.3 30.6 17.1

DSSAT v3, Volume 2 • DSSAT v3,

66

TABLE 16. DETAILED SIMULATION NITROGEN OUTPUT FILE. (OUTN)

STRUCTURE				
Variable	Variable Name ¹ Header	2 For	mat	3
Line 1		_		
Run number ⁴	NREP	5	I	3
Run identifier	TITLER	10	С	25
Line 2				
Model name	MODEL	18	С	8
Crop name	CROPD	3	С	10
Line 3				
Experiment identifier, made up of:				
Institute code	INSTE	18	С	2
Site code	SITEE	0	С	2
Experiment number/abbreviation	EXPTNO	0	С	4
Crop group code	CROP	1	С	2
Experiment name (Treatment set and				
experimental condition names,				
separated by a semi-colon)	ENAME	18	С	60
Line 4				
Treatment number	TRTNO	11	I	2
Treatment name	TITLET	5	С	25
Line 5 ⁵				
Variable abbreviations		1	С	77+
Line 6 on				
Date (Year + days from Jan. 1)	YRDOY DATE	1	I	5
Days from planting	DAP CDAY	1	I	5
Crop nitrogen	WTNCAN CNAD	1	R	5 1
Grain nitrogen, kg ha ⁻¹	WTNSD GNAD	1	R	5 1
Veg. (stem + leaf) nitrogen, kg ha^{-1}	WTNVEG VNAD	1	R	5 1
Percent nitrogen in grain, %	PCNGRN HN%D	1	R	52
Percent veg(stem+leaf) nitrogen, %	PCNVEG VN%D	1	R	52
Cumulative inorganic N applied, kg ha	a ⁻¹ TANFGR NAPC	1	R	5 I
Cumulative N fixation, kg ha ⁻¹	WTNFX NFXC	1	R	5 1
Cumulative N uptake, kg ha ⁻¹	WTNUP NUPC	1	R	5 1
Cumulative N leached, kg ha ^{-1}	TLCH NLCC	1	R	5 1
Inorganic N in soil, kg ha ⁻¹	TSIN NIAD	1	R	5 1
Organic N in soil, kg ha ⁻¹	TSON NOAD	1	I	5

¹ Abbreviations used as variable names in the IBSNAT models.

- ² Abbreviations suggested for use in header lines (those designated with '@') within the file. They correspond to the variable names used in the associated database.
- ³ Formats are presented as follows: number of leading spaces, variable type (Character = C, Real = R, Integer = I), variable width, and (if real) number of decimals.
- ⁴ Each new run should be demarcated with '*RUN' at the beginning of this line in each file.
- ⁵ Additional information can be placed between lines 4 and 5, as required by a user, as illustrated in the example, and as documented for the Overview file in the text.

EXAMPLE NITROGEN OUTPUT FILE

*NITROGEN BALANCE OUTPUT FILE

EXPERIMENT : UFGA8101 SB COBE, IRRIGATED, VEG. & REPROD. STRESS TREATMENT 1 : IRRIGATED, COBE CROP : SOYBEAN CULTIVAR : COBB - MATURITY GROUP 8 STARTING DATE : JUN 26 1981 PLANTS/m2: 35.9 ROW SPACING: 76.cm WEATHER : UFGA 1981 SOLL : IBSSP10015 TEXTURE: - MILHOPPEr Fine Sand SOLL INITAL C: DEPTH:180cm EXTR. H20:158.4mm NO3: .0kg/ha NH4: .0kg/ha WATER BALANCE : IBRIGATE ACCORDING TO FIELD SCHEDULE IRRIGATE ACCORDING TO FIELD SCHEDULE IRRIGATE ACCORDING TO FIELD SCHEDULE IRRIGATE ACCORDING TO FIELD SCHEDULE NITROGEN BAL. : SOLI-N, N-UPTAKE & DYNAMIC N-FIXATION SIMULATION NFERTILIZER 0 kg/ha IN 0 APPLICATIONS .0 RAIN= .0 CO2 = R 330.0 DEW = .0 WIND= .0 SIMULATION OPT : WATER :Y NITROGEN:Y N-FIX:Y PESTS :N PHOTO :C ET :R MANAGEMENT OPT : PLANTING:R IRRIG :R FERT :R RESIDUE:R HARVEST:M WTH:M @DATE CDAY CNA 000 00 0.0 .0 .0 .2 3895 81189 12 3.0 .0 3.0 .289 0 .7.2 .0 .7.2 3.889	*RUN 1 MODEL	: IRRIGATED, CC : CRGR0940 - SC				
<pre>TREATMENT 1 : IRRIGATED, COBB CROP : SOYBEAN CULTIVAR : COBB - MATURITY GROUP 8 STARTING DATE : JUN 26 1981 PLANTS/m2 : 35.9 ROW SPACING : 76.cm WEATHER : UGA 1980 SOLL : IBSB910015 TEXTURE : - Millhopper Fine Sand SOLL INITIAL C : DEPTH180cm EXTR. H201156.4mm NO3 : .0kg/ha NH4: .0kg/ha WATRE BALANCE : IRRIGATE ACCORDING TO FIELD SCHEDULE IRRIGATION : 315 mm IN 19 APPLICATIONS NITROGEN BAL. : SOLL-N, N-UFTAKE & DYNAMIC N-FIXATION SIMULATION N FERTILIZE : 0 kg/ha IN 0 APPLICATIONS ENTIROM. OPT : DAYL= .0 SRAD= .0 TMAX= .0 TMIN= .0 RAIN= .0 CO2 = R 330.0 DEW = .0 WIND= .0 SIMULATION OPT : VINTROGEN: Y N-FIX:Y PESTS :N PHOTO :C ET :R MANAGEMENT OPT : PLANTING:R IRRIG :R FERT :R RESIDUE:R HARVEST:M WTH:M @DATE CDAY CNAD GNAD VNAD GN&D VN&D NAPC NFXC NUPC NLCC NIAD NOAD 81177 0 .0 .0 .0 .00 .00 0 .0 .0 .0 .2 3895 81183 6 1.6 .0 1.6 .00 4.03 0 .6 .07 2.3 3893 81189 12 3.0 0 3.0 .00 3.28 0 2.5 0 .7.7 3.6 3892 81183 6 1.6 .0 1.6 .00 3.28 0 2.5 0 .7.7 3.6 3892 81195 18 6.3 .0 6.3 .00 2.89 0 7.2 .0 -1.2 5.4 3891 81201 24 14.3 .0 14.3 .00 3.21 0 17.9 .0 -1.8 7.3 3889 81201 30 0.4 .0 30.0 0 3.70 0 94.8 .0 -2.5 11.6 3866 81221 54 130.2 .0 130.2 .00 3.70 0 94.8 .0 -2.6 13.0 3865 81231 56 15.5 .0 52.5 .00 3.72 0 64.7 .0 -1.8 8.4 3888 81233 36 52.5 .0 52.5 .00 3.72 0 64.7 .0 -1.8 8.4 3888 81233 36 52.5 .0 52.5 .00 3.72 0 64.7 .0 -1.8 8.4 3888 81231 54 130.2 .0 130.2 .00 3.60 0 152.9 0 .2.6 13.0 3865 81243 66 160.2 .0 150.7 .00 3.53 0 193.4 .0 -2.6 11.6 3866 81225 48 105.3 .0 164.3 .00 3.54 0 194.4 .0 -2.6 13.0 3865 81243 66 160.2 .0 150.7 .00 3.73 0 194.8 .0 -2.7 15.5 3882 81243 66 160.2 .0 150.7 .00 3.73 0 194.8 .0 -4.7 21.1 3879 81261 84 193.2 19.0 152.1 6.37 2.84 0 237.6 .0 -4.7 12.3 3877 81261 84 193.2 19.0 152.1 6.37 2.84 0 237.6 .0 -4.7 23.3 3876 81273 96 233.4 98.4 109.4 6.37 2.31 0 282.1 .0 -4.7 2.4.3 3876 81273 96 233.4 98.4 109.4 6.37 2.31 0 282.1 .0 -4.7 2.5. 3874 81255 78 186.2 2.1 170.9 6.37 3.15 0 227.5 .0 -4.7 2.5. 3874 81251 98 281.1 184.6 782.6 37 1.83 0 330.7 5 -4.7</pre>				דה עדמ ג סדהס	חם פידם דיפפ	
CROP : SOYBEAN CULTIVAR : COBB - MATURITY GROUP 8 STARING DATE : JUN 26 1981 PLANTS/m2 : 35.9 ROW SPACING : 76.cm WEATHER : UFGA 1981 SOIL : IBSB910015 TEXTURE : - Millhopper Fine Sand SOIL : IBSB910015 TEXTURE : - MILLHOPPER Fine Sand .0kg/ha NH4: .0kg/ha WATER BALANCE : IRRIGATE ACCORDING TO FIELD SCHEDULE IRRIGATION : 315 mm IN 19 APPLICATIONS NITROGRE BAL. : SOIL-N, N-UPTAKE & DYNAMIC N-FIXATION SIMULATION N FERTILIZER 0 kg/ha IN 0 APPLICATIONS ENDUR/MANDRE 0 kg/ha IN 0 APPLICATIONS ENDUR/MANDRE 0 kg/ha IN 0 APPLICATIONS ENVIRONM. OFT : MATER :Y NITROGEN:Y N-FIX:Y PESTS :N PHOTO :C ET :R MANAGEMENT OPT : PLANTING:R IRRIG :R FERT :R RESIDUE:R HARVEST:M WTH:M @DATE CDAY CNAD GN&D VN&D 0.0 .0 .0 .2 3895 81183 6 1.6 .0 1.6 .00 .0 .2 3895 81189 12 3.0 .0 .2 0 .2 3895 81189 12 3.0 .0 .2 1.0 .1.1.2 5.4 3891				ED, VEG. & REFR	OD. SIKESS	
STARTING DATE : JUN 26 1981 PLANTING DATE : JUN 26 1981 PLANTING DATE : JUN 26 1981 SOIL UFGA 1981 SOIL : IBSB910015 TEXTURE : - Millhopper Fine Sand SOIL INITIAL C : DEPTH:180cm EXTR. H20:158.4mm NO3: .0kg/ha NH4: .0kg/ha WATER BALANCE : IRRIGATE ACCORDING TO FIELD SCHEDULE IRRIGATION : 315 mm IN 19 APPLICATIONS NITROGEN BAL. : SOIL-N, N-UPTAKE & DYNAMIC N-FIXATION SIMULATION N FERTILIZER : 0 kg/ha IN 0 APPLICATIONS RAIN= .0 CC2 = R 330.0 DEW = .0 WIND= .0 RAIN= .0 CC2 = R 330.0 DEW = .0 WIND= .0 SIMULATION OPT : WATER :Y NITROGEN:Y N-FIX:Y PESTS :N PHOTO :C ET :R MANAGEMENT OPT : PLANTING:R IRRIG :R FERT :R RESIDUE:R HARVEST:M WTH:M @DATE CDAY CNAD GNAD VNAD GN&D VNAD NAPC NFXC NUPC NLCC NIAD NOAD 81183 6 1.6 .0 1.6 .00 4.03 0 .6 .0 .7 2.3 3893 81189 12 3.0 .0 3.0 .00 3.28 0 2.5 .0 .7 3.6 3892 81195 18 6.3 .0 6.3 .00 2.89 0 7.2 .0 -1.2 5.4 3891 81207 30 30.4 .0 30.4 .00 3.54 0 38.9 .0 -1.8 8.4 3888 81213 36 52.5 .0 52.5 .00 3.72 0 64.7 .0 -1.8 9.6 387 81221 44 130.2 .0 130.2 .00 3.60 0 152.9 .0 -2.6 14.2 3883 81231 54 130.2 .0 130.2 .00 3.60 0 152.9 .0 -2.6 14.2 3883 81231 54 130.2 .0 130.2 .00 3.70 0 94.8 .0 -4.7 19.9 3880 81231 54 130.2 .0 130.2 .00 3.61 0 14.4 .0 -2.6 13.0 3885	INDAIMENI I	· INNIGATED, CC	00			
PLANTING DATE : JUN 26 1981 PLANTS/m2 : 35.9 ROW SPACING : 76.cm WEATHER : UFGA 1981 SOIL : IBSB910015 TEXTURE : - Millhopper Fine Sand SOIL INITIAL C : DEPTH:180cm EXTR. H20:158.4mm N03: .0kg/ha NH4: .0kg/ha WATER BALANCE : IRRIGATE ACCORDING TO FIELD SCHEDULE IRRIGATION : 315 mm IN 19 APPLICATIONS NN FERTILIZER : Okg/ha IN 0 APPLICATIONS RESIDUE/MANURE : O kg/ha IN 0 APPLICATIONS ENVIRONM. OPT. : DAYL= .0 SRAD= .0 TMAX= .0 TMIN= .0 RAIN= .0 CO2 = R 330.0 DEW = .0 WIND= .0 SIMULATION OPT : WATER 'Y NITROGEN'Y N-FIX'Y PESTS 'N PHOTO :C C TI :R MANAGEMENT OPT : PLANTING:R IRRIG 'R FERT :R RESIDUE:R HARVEST'M WTH:M *DATE CDAY CNAD GNAD VNAD GN&D VN&D NAPC NFXC NUPC NLCC NIAD NOAD 81177 0 .0 .0 .0 .0 .00 .00 .00 .0 .0 .0 .0 .	CROP	: SOYBEAN	CULTIVAR : CO	BB	- MATURITY GROUP 8	3
<pre>WEATHER : UFGA 1981 SOIL : INSTALC : DEPTH:180cm EXTR. H20:158.4mm N3: .0kg/ha NH4: .0kg/ha WATER BALANCE : INFLOATE ACCORDING TO FIELD SCHEDULE IRRIGATION : 315 mm IN 19 APPLICATIONS NITROGEN BAL. : SOIL-N, N-UPTAKE & DYNAMIC N-FIXATION SIMULATION N FERTILIZER : 0 kg/ha IN 0 APPLICATIONS RESIDU/MANURE : 0 kg/ha IN 0 APPLICATIONS ENVIRONM. OPT. : DAYL= .0 SRAD= .0 TMAX= .0 TMIN= .0 RAIN= .0 CO2 = R 330.0 DEW = .0 WIND= .0 SIMULATION OPT : WATER :Y NITROGEN:Y N-FIX:Y PESTS :N PHOTO :C ET :R MANAGEMENT OPT : PLANTING:R IRRIG :R FERT :R RESIDUE:R HARVEST:M WTH:M ************************************</pre>	STARTING DATE	: JUN 26 1981				
SOIL : IBSB910015 TEXTURE : - Millhopper Fine Sand SOIL INITIAL C : DEPTH:180cm EXTR. H20:158.4mm N03: .0kg/ha NH4: .0kg/ha WATER BALANCE : IRRIGATE ACCORDING TO FIELD SCHEDULE IRRIGATION : 315 mm IN ID APPLICATIONS NITROGEN BAL. : SOIL-N, N-UPTAKE & DYNAMIC N-FIXATION SIMULATION N FERTILIZER : 0 kg/ha IN 0 APPLICATIONS RESIDUE/MANURE : 0 kg/ha IN 0 APPLICATIONS ENVIRON. OFT : DAYL .0 SRAD 0 TMIN* 0.0 TMIN* 0.0 RAIN* .0 CO2 = R 330.0 DEW = .0 WIND* .0 .0 SIMULATION OFT : WATER :Y NITROGEN:Y N-FIX:Y PESTS :N PHOTO :C ET :R MANAGEMENT OPT : PLANTING:R IRRIG :R FERT :R RESIDUE:R HARVEST:M WTH:M @DATE CDAY CNAD GNAD VNAD 0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	PLANTING DATE	: JUN 26 1981	PLANTS/m2 : 3	5.9 ROW SPA	CING : 76.cm	
SOIL INITIAL C : DEPTH:180cm EXTR. H20:158.4mm N03: .0kg/ha NH4: .0kg/ha WATER BALANCE : IRRIGATE ACCORDING TO FIELD SCHEDULE IRRIGATION : .315 mm IN 19 APPLICATIONS NITROGEN BAL. : SOIL-N, N-UPTAKE & DYNAMIC N-FIXATION SIMULATION N FERTILIZER : .0 kg/ha IN 0 APPLICATIONS RESIDUE/MANURE : 0 kg/ha IN 0 APPLICATIONS ENVIRONM. OPT. : DAYL= .0 SRAD= .0 TMAX= .0 TMIN= .0 RAIN= .0 CO2 = R 330.0 DEW = .0 WIND= .0 SIMULATION OPT : WATER :Y NITROGEN:Y N-FIX:Y PESTS :N PHOTO :C ET :R MANAGEMENT OPT : PLANTING:R IRRIG :R FERT :R RESIDUE:R HARVEST:M WTH:M @DATE CDAY CNAD GNAD VNAD GN&D VN&D NAPC NFXC NUPC NLCC NIAD NOAD 81177 0 .0 .0 .0 .00 .00 .00 .0 .0 .0 .0 .2 3895 81183 6 1.6 .0 1.6 .00 4.03 0 .6 .0 -7.7 2.3 3893 81189 12 3.0 .0 3.0 .00 3.288 0 2.5 .0 -7.7 3.6 3892 81195 18 6.3 .0 6.3 .00 2.899 0 7.2 .0 -1.8 7.3 3889 81201 24 14.3 .0 14.3 .00 3.21 0 17.9 .0 -1.8 7.3 3889 81213 36 52.5 .0 52.5 .00 3.72 0 64.7 .0 -1.8 8.4 3888 81213 36 52.5 .0 52.5 .00 3.70 0 94.8 .0 -2.5 11.6 3886 81225 48 105.3 .00 165.3 .00 3.65 0 124.4 .0 -2.6 13.0 3885 81231 54 130.2 .0 159.7 .00 3.53 0 193.4 .0 -2.8 16.8 3881 81243 66 160.2 .0 159.7 .00 3.53 0 193.4 .0 -2.8 16.8 3881 81243 66 160.2 .0 159.7 .00 3.53 0 193.4 .0 -2.8 16.8 3881 81243 66 160.2 .0 159.7 .00 3.53 0 193.4 .0	WEATHER					
WATER BALANCE : IRRIGATE ACCORDING TO FIELD SCHEDULE IRRIGATION : 315 mm IN 19 APPLICATIONS NITROGEN BAL. : SOIL-N, N-UPTAKE & DYNAMIC N-FIXATION SIMULATION N FERTILIZER : 0 kg/ha IN 0 APPLICATIONS RESIDUE/MANURE : 0 kg/ha IN 0 APPLICATIONS ENVIRONM. OPT. : DAL= .0 SRAD= .0 TMAX= .0 WIND= .0 SIMULATION OPT : WATER :Y NITROGEN:Y N-FIX:Y PESTS :N PHOTO :C C T :R MANAGEMENT OPT : PLANTING:R IRRIG :R FERT :R RESIDUE:R HARVEST:M WTH:M @DATE CDAY CNAD GNAD VN&D NAPC NFC <nupc< td=""> NLCC NIAD 81189 12 3.0 .0 .0 .0 .0 .2 3893 81195 18 6.3 .0 2.89 0 7.2 .0 -1.2 5.4 3891 81201 24 14.3 .0 14.3 .0 3.72 0 64.7 .0 -1.6 3886 81213 36 52.5 .0 3.72 0 64.7 .0 -1.8 8.4 3886 8121</nupc<>						
 IRRIGATION : 315 mm IN 19 APPLICATIONS NITROGEN BAL. : SOIL-N, N-UPTAKE & DYNAMIC N-FIXATION SIMULATION N FERTILIZER : 0 kg/ha IN 0 APPLICATIONS RESIDUE/MANURE : 0 kg/ha IN 0 APPLICATIONS ENVIRONM. OPT. : DAYL 0 SRAD 0 OTMAX 0 TMIN 0 OTMIN 0 OTMIN 0 OT 0 CO2 = R 330.0 DEW = 0 TMAX 0 MIND 0 OT 1. SIMULATION OPT : WATER :Y NITROGEN:Y N-FIX:Y PESTS :N PHOTO :C ET :R MANAGEMENT OPT : PLANTING:R IRRIG :R FERT :R RESIDUE:R HARVEST:M WTH:M ©DATE CDAY CNAD GNAD VNAD GN%D VN%D NAPC NFXC NUPC NLCC NIAD NOAD 81177 0 .0 0.0 .0 0.0 0 0 .0 0.0 .0 0.0 0.0	SOIL INITIAL C	: DEPTH:180cm E	XTR. H20:158.4m	m NO3: .0kg/	ha NH4: .0kg/ha	
NITROGEN BAL. : SOIL-N, N-UPTAKE & DYNAMIC N-FIXATION SIMULATION N FERTILIZER : 0 kg/ha IN 0 APPLICATIONS RESIDUE/MANURE : 0 kg/ha IN 0 APPLICATIONS ENVIRONM. OPT. : DAYL= .0 SRAD= .0 TMIN= .0 RAIN= .0 CO2 = R 330.0 DEW = .0 WIND= .0 SIMULATION OPT. WATER :Y NITROGEN:Y N-FIX:Y PESTS :N PHOTO :C ET :R MANAGEMENT OPT. :PLANTING:R IRRIG :R FERT :R RESIDUE:R HARVEST:M WTH:M ®DATE CDAY CNAD GNAD VNAD GN&D VN&D NAPC NFXC NUPC NLCC NIAD 81187 1.6 .0 1.6 .00 4.03 0 6.0 7 2.3 3893 81189 12 3.0 .0 3.0 .00 3.28 0 2.5 .0 7 3.6 3892 81195 18 6.3 .0 1.4.3 .00	WATER BALANCE	: IRRIGATE ACCC	RDING TO FIELD	SCHEDULE		
N FERTILIZER 0 kg/ha IN 0 APPLICATIONS RESIDUE/MANURE 0 kg/ha IN 0 APPLICATIONS ENVIRONM. OPT. DAYL= .0 SRAD= .0 TMAX= .0 TMIN= .0 TMIN= .0 RAIN= .0 CO2 = R 330.0 DEW .0 TMAX= .0 WIND= .0 WIND= .0 SIMULATION OPT WATER Y NITROGEN:Y N-FIX:Y PESTS N PHOTO :C ET :R MANAGEMENT OPT PLANTING:R IRRIG :R FERT :R RESIDUE:R HARVEST:M WTH:M @DATE CDAY CNAD GNAD VNAD GNAC NFC NUC NLCC NLAD NOAD 81183 6 1.6 .0 .00 .00 .	IRRIGATION	: 315 mm I	N 19 APPLICA	TIONS		
RESIDUE/MANURE : 0 kg/ha IN 0 APPLICATIONS ENVIRONM. OPT. : DAYL= .0 SRAD= .0 TMAX= .0 TMIN= .0 RAIN= .0 CO2 = R 330.0 DEW = .0 WIND= .0 SIMULATION OPT : WATER :Y NITROGEN:Y N-FIX:Y PESTS :N PHOTO : C ET :R MANAGEMENT OPT : PLANTING:R IRRIG :R FERT :R RESIDUE:R HARVEST:M WTH @DATE CDAY CNAD GNAD VN&D NAPC NFXC NUCC NIAD NOAD 81177 0 .0 .0 .00 .00 .0 .0 .0 .2 3893 81189 12 3.0 .0 3.0 .00 3.28 0 2.5 .0 7 3.6 3892 81195 18 6.3 .0 14.3 .00 3.21 0 17.9 .0 -1.8 8.4 3888 81207 30 30.4 .0 3.72 0 64.7					ATION	
ENVIRONM. OPT. : DAYL= .0 SRAD= .0 TMAX= .0 TMIN= .0 RAIN= .0 CO2 = R 330.0 DEW = .0 WIND= .0 SIMULATION OPT : WATER :Y NITROGEN:Y N-FIX:Y PESTS :N PHOTO :C ET :R MANAGEMENT OPT : PLANTING:R IRRIG :R FERT :R RESIDUE:R HARVEST:M WTH:M @DATE CDAY CNAD GNAD VNAD GN%D VN%D NAPC NFXC NUPC NLCC NIAD NOAD 81177 0 .0 .0 .0 .00 .00 0 .0 .0 .0 .0 .2 3895 81183 6 1.6 .0 1.6 .00 4.03 0 .6 .07 2.3 3893 81189 12 3.0 .0 3.0 .00 3.28 0 2.5 .07 3.6 3892 81195 18 6.3 .0 6.3 .00 2.89 0 7.2 .0 -1.2 5.4 3891 81201 24 14.3 .0 14.3 .00 3.21 0 17.9 .0 -1.8 7.3 3889 81207 30 30.4 .0 30.4 .00 3.54 0 38.9 .0 -1.8 8.4 3888 81213 36 52.5 .0 52.5 .00 3.72 0 64.7 .0 -1.8 9.6 3887 81219 42 78.8 .0 78.8 .00 3.70 0 94.8 .0 -2.5 11.6 3886 81225 48 105.3 .0 105.3 .00 3.65 0 124.4 .0 -2.6 13.0 3885 81231 54 130.2 .0 130.2 .00 3.65 0 124.4 .0 -2.6 13.0 3885 81231 54 130.2 .0 130.2 .00 3.65 0 124.4 .0 -2.6 13.0 3885 81231 54 130.2 .0 130.2 .00 3.65 0 124.4 .0 -2.6 13.0 3885 81243 66 160.2 .0 159.7 .00 3.53 0 193.4 .0 -2.8 16.8 3881 81249 72 176.7 .0 171.5 .00 3.39 0 213.6 .0 -4.7 19.9 3880 81255 78 186.2 2.1 170.9 6.37 3.15 0 227.5 .0 -4.7 21.1 3879 81261 84 193.2 19.0 152.1 6.37 2.62 0 257.4 .0 -4.7 22.3 3877 81267 90 210.3 49.5 133.5 6.37 2.62 0 257.4 .0 -4.7 24.4 3875 81279 102 262.4 148.5 92.4 6.37 2.31 0 282.1 .0 -4.7 24.4 3875 81279 102 262.4 148.5 92.4 6.37 2.05 0 312.1 .0 -4.7 24.4 3875 81279 102 262.4 148.5 92.4 6.37 2.05 0 312.1 .0 -4.7 24.4 3875 81279 102 262.4 148.5 92.4 6.37 2.05 0 312.1 .0 -4.7 24.3 3876 81273 96 233.4 98.4 109.4 6.37 2.31 0 282.1 .0 -4.7 24.3 3876 81273 96 233.4 98.4 109.4 6.37 2.31 0 282.1 .0 -4.7 25.5 3874 81285 108 281.1 184.6 78.2 6.37 1.83 0 330.7 .5 -4.7 31.0 3873 81291 114 301.8 213.7 71.7 6.37 1.66 0 352.2 .6 -4.7 31.8 3872	N FERTILIZER	: 0 kg/h	a IN 0 APPL	ICATIONS		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
SIMULATION OPT : WATER :Y NITROGEN:Y N-FIX:Y PESTS :N PHOTO :C ET :R @DATE CDAY CNAD GNAD VNAD GN%D VN%D NAPC NFXC NUPC NLCC NIAD NOAD 81177 0 .0 .0 .00 .00 0 .0 .0 .2 3895 81183 6 1.6 .0 1.6 .00 4.03 0 .6 .0 7 2.3 3893 81189 12 3.0 .0 3.0 .00 3.28 0 2.5 .0 7 3.6 3892 81195 18 6.3 .0 6.3 .00 3.21 0 17.9 .0 -1.8 7.3 3889 81201 24 14.3 .0 14.3 .00 3.72 0 64.7 .0 -1.8 8.4 3888 81213 36 52.5 .0 3.65 0 124.4 .0 -2.6 13.0 3885 <td>ENVIRONM. OPT.</td> <td>: DAYL= .0</td> <td>SRAD= .0</td> <td>TMAX= .0</td> <td>TMIN= .0</td> <td></td>	ENVIRONM. OPT.	: DAYL= .0	SRAD= .0	TMAX= .0	TMIN= .0	
MANAGEMENT OPT : PLANTING:R IRRIG :R FERT :R RESIDUE:R HARVEST:M WTH:M @DATE CDAY CNAD GNAD VNAD GN%D VN%D NAPC NFXC NUPC NLCC NIAD NOAD 81177 0 .0 .0 .00 .00 0 .0 .0 .2 3895 81183 6 1.6 .0 1.6 .00 4.03 0 .6 .0 7 2.3 3893 81189 12 3.0 .0 3.0 .00 3.28 0 2.5 .0 7 3.6 3892 81195 18 6.3 .0 6.3 .00 3.28 0 7.2 .0 -1.2 5.4 3891 81201 24 14.3 .0 14.3 .00 3.54 0 38.9 .0 -1.8 8.4 3886 81213 36 52.5 .0 52.5 .00 3.70 0 94.8 .0 -2.6 14.2 3886 81213 54 130.2		RAIN= .0	CO2 = R 330.0	DEW = .0	WIND= .0	
@DATE CDAY CNAD GNAD VNAD GN&D VN&D NAPC NFXC NUPC NLCC NIAD NOAD 81177 0 .0 .0 .00 .00 0 .0 .0 .0 .2 3895 81183 6 1.6 .0 1.6 .00 4.03 0 .6 .0 7 2.3 3893 81189 12 3.0 .0 3.0 .00 3.28 0 2.5 .0 7 3.6 3892 81195 18 6.3 .0 14.3 .00 3.21 0 17.9 .0 -1.8 7.3 3889 81207 30 30.4 .0 30.4 .00 3.72 0 64.7 .0 -1.8 8.4 3886 81219 42 78.8 .0 78.8 .00 3.70 94.8 .0 -2.6 13.0 3885 81231 </td <td>SIMULATION OPT</td> <td>: WATER :Y N</td> <td>ITROGEN:Y N-FI</td> <td>X:Y PESTS :N</td> <td>PHOTO :C ET :R</td> <td></td>	SIMULATION OPT	: WATER :Y N	ITROGEN:Y N-FI	X:Y PESTS :N	PHOTO :C ET :R	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MANAGEMENT OPT	: PLANTING:R I	RRIG :R FERT	:R RESIDUE:R	HARVEST:M WTH:M	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
8118361.6.01.6.004.030.6.0 7 2.33893 81189 123.0.03.0.003.2802.5.0 7 3.63892 81195 186.3.06.3.002.8907.2.0 -1.2 5.43891 81201 2414.3.014.3.003.21017.9.0 -1.8 7.33889 81207 3030.4.030.4.003.54038.9.0 -1.8 8.43888 81213 3652.5.052.5.003.72064.7.0 -1.8 9.63887 81219 4278.8.078.8.003.70094.8.0 -2.5 11.63886 81225 48105.3.0130.2.003.600152.9.0 -2.6 14.23883 81231 54130.2.0130.2.003.530193.4.0 -2.8 16.83881 81243 66160.2.0159.7.003.530193.4.0 -2.8 16.83881 81249 72176.7.0171.5.003.390213.6.0 -4.7 21.13879 81261 84193.219.0152.16.372.840237.6.0 $-4.$				PC NFXC NUPC	NLCC NIAD NOAD	
81189 12 3.0 .0 3.28 0 2.5 .0 7 3.6 3892 81195 18 6.3 .0 6.3 .00 2.89 0 7.2 .0 -1.2 5.4 3891 81201 24 14.3 .0 14.3 .00 3.21 0 17.9 .0 -1.8 7.3 3889 81207 30 30.4 .0 30.4 .00 3.54 0 38.9 .0 -1.8 7.3 3889 81213 36 52.5 .0 52.5 .00 3.72 0 64.7 .0 -1.8 9.6 3887 81219 42 78.8 .0 78.8 .00 3.70 0 94.8 .0 -2.6 13.0 3885 81231 54 130.2 .0 130.2 .00 3.65 0 124.4 .0 -2.6 14.2 3883 81231 54 130.2 .0 159.7 .00 3.53 0 174.1	81177 0	.0 .0 .0			.0 .2 3895	
81195 18 6.3 $.0$ 6.3 $.00$ 2.89 0 7.2 $.0$ -1.2 5.4 3891 81201 24 14.3 $.0$ 3.21 0 17.9 $.0$ -1.8 7.3 3889 81207 30 30.4 $.0$ 30.4 $.00$ 3.54 0 38.9 $.0$ -1.8 8.4 3888 81213 36 52.5 $.0$ 52.5 $.00$ 3.72 0 64.7 $.0$ -1.8 9.6 3887 81219 42 78.8 $.0$ 78.8 $.00$ 3.70 0 94.8 $.0$ -2.5 11.6 3886 81225 48 105.3 $.0$ 13.65 0 124.4 $.0$ -2.6 13.0 3885 81231 54 130.2 $.0$ 130.2 $.00$ 3.60 0 152.9 $.0$ -2.6 14.2 3883 81237 60 146.3 $.0$ 146.3 $.00$ 3.58 0 174.1 $.0$ -2.7 15.5 3882 81243 66 160.2 $.0$ 159.7 $.00$ 3.53 0 193.4 $.0$ -2.8 16.8 3881 81249 72 176.7 $.0$ 171.5 $.00$ 3.39 0 213.6 $.0$ -4.7 19.9 3880 81255 78 186.2 2.1 170.9 6.37 3.15 0 227.5			.00 4.03	0 .6 .0	7 2.3 3893	
81201 24 14.3 .00 3.21 0 17.9 .0 -1.8 7.3 3889 81207 30 30.4 .0 30.4 .00 3.54 0 38.9 .0 -1.8 7.3 3889 81207 30 30.4 .0 30.4 .00 3.54 0 38.9 .0 -1.8 7.3 3889 81213 36 52.5 .0 52.5 .00 3.72 0 64.7 .0 -1.8 9.6 3887 81219 42 78.8 .0 78.8 .00 3.70 0 94.8 .0 -2.5 11.6 3886 81225 48 105.3 .0 130.2 .00 3.60 0 152.9 .0 -2.6 14.2 3883 81237 60 146.3 .0 130.2 .00 3.53 0 174.1 .0 -2.7 15.5 3882 81243 66 160.2 .0 159.7 .00 3.53 0 193.4<						
81201 24 14.3 .00 3.21 0 17.9 .0 -1.8 7.3 3889 81207 30 30.4 .0 30.4 .00 3.54 0 38.9 .0 -1.8 7.3 3889 81207 30 30.4 .0 30.4 .00 3.54 0 38.9 .0 -1.8 7.3 3889 81213 36 52.5 .0 52.5 .00 3.72 0 64.7 .0 -1.8 9.6 3887 81219 42 78.8 .0 78.8 .00 3.70 0 94.8 .0 -2.5 11.6 3886 81225 48 105.3 .0 130.2 .00 3.60 0 152.9 .0 -2.6 14.2 3883 81237 60 146.3 .0 3.53 0 174.1 .0 -2.7 15.5 3882 81243 66 160.2 .0 159.7 .00 3.53 0 193.4 .0 -2.8 <td>81195 18</td> <td></td> <td>.00 2.89</td> <td>0 7.2 .0</td> <td></td> <td></td>	81195 18		.00 2.89	0 7.2 .0		
81213 36 52.5 .00 3.72 0 64.7 .0 -1.8 9.6 3887 81219 42 78.8 .0 78.8 .00 3.70 0 94.8 .0 -2.5 11.6 3886 81225 48 105.3 .0 105.3 .00 3.65 0 124.4 .0 -2.6 13.0 3885 81231 54 130.2 .0 130.2 .00 3.60 0 152.9 .0 -2.6 14.2 3883 81237 60 146.3 .00 3.53 0 174.1 .0 -2.7 15.5 3882 81243 66 160.2 .0 159.7 .00 3.53 0 193.4 .0 -2.8 16.8 3881 81249 72 176.7 .0 171.5 .00 3.39 0 213.6 .0 -4.7 21.1 3879 81261 84 193.2 19.0 152.1 6.37 2.84 0 237.6 .0						
81219 42 78.8 .00 78.8 .00 3.70 0 94.8 .0 -2.5 11.6 3886 81225 48 105.3 .0 105.3 .00 3.65 0 124.4 .0 -2.6 13.0 3885 81231 54 130.2 .0 130.2 .00 3.60 0 152.9 .0 -2.6 14.2 3883 81237 60 146.3 .0 146.3 .00 3.58 0 174.1 .0 -2.7 15.5 3882 81243 66 160.2 .0 159.7 .00 3.53 0 193.4 .0 -2.8 16.8 3881 81249 72 176.7 .0 171.5 .00 3.39 0 213.6 .0 -4.7 19.9 3880 81255 78 186.2 2.1 170.9 6.37 3.15 0 227.5 .0 -4.7 21.1 3879 81261 84 193.2 19.0 152.1 6.3						
81225 48 105.3 .0 105.3 .00 3.65 0 124.4 .0 -2.6 13.0 3885 81231 54 130.2 .0 130.2 .00 3.60 0 152.9 .0 -2.6 14.2 3883 81237 60 146.3 .0 146.3 .00 3.58 0 174.1 .0 -2.7 15.5 3882 81243 66 160.2 .0 159.7 .00 3.53 0 193.4 .0 -2.8 16.8 3881 81249 72 176.7 .0 171.5 .00 3.39 0 213.6 .0 -4.7 19.9 3880 81255 78 186.2 2.1 170.9 6.37 3.15 0 227.5 .0 -4.7 21.1 3879 81261 84 193.2 19.0 152.1 6.37 2.84 0 237.6 .0 -4.7 22.3 3877 81267 90 210.3 49.5 133.5 6.37 2.62 0 257.4 .0 -4.7 23.3 3876 81273 96 233.4 98.4 109.4 6.37 2.31 0 282.1 .0 -4.7 24.4 3875 81279 102 262.4 148.5 92.4 6.37 2.05 0 312.1 .0 -4.7 25.5 3874 81285 108 281.1 184.6 78.2 6.37 1.83 0 330.7 .5 -4.7 31.0 3873						
81231 54 130.2 .00 3.60 0 152.9 .0 -2.6 14.2 3883 81237 60 146.3 .00 3.58 0 174.1 .0 -2.7 15.5 3882 81243 66 160.2 .0 159.7 .00 3.53 0 193.4 .0 -2.8 16.8 3881 81249 72 176.7 .0 171.5 .00 3.39 0 213.6 .0 -4.7 19.9 3880 81255 78 186.2 2.1 170.9 6.37 3.15 0 227.5 .0 -4.7 21.1 3879 81261 84 193.2 19.0 152.1 6.37 2.84 0 237.6 .0 -4.7 22.3 3877 81267 90 210.3 49.5 133.5 6.37 2.62 0 257.4 .0 -4.7 23.3 3876 81273 96 233.4 98.4 109.4 6.37 2.05 0 312.1						
81237 60 146.3 .00 3.58 0 174.1 .0 -2.7 15.5 3882 81243 66 160.2 .0 159.7 .00 3.53 0 193.4 .0 -2.8 16.8 3881 81249 72 176.7 .0 171.5 .00 3.39 0 213.6 .0 -4.7 19.9 3880 81255 78 186.2 2.1 170.9 6.37 3.15 0 227.5 .0 -4.7 21.1 3879 81261 84 193.2 19.0 152.1 6.37 2.84 0 237.6 .0 -4.7 22.3 3877 81267 90 210.3 49.5 133.5 6.37 2.62 0 257.4 .0 -4.7 23.3 3876 81273 96 233.4 98.4 109.4 6.37 2.31 0 282.1 .0 -4.7 24.4 3875 81279 102 262.4 148.5 92.4 6.37 2.05						
81243 66 160.2 .0 159.7 .00 3.53 0 193.4 .0 -2.8 16.8 3881 81249 72 176.7 .0 171.5 .00 3.39 0 213.6 .0 -4.7 19.9 3880 81255 78 186.2 2.1 170.9 6.37 3.15 0 227.5 .0 -4.7 21.1 3879 81261 84 193.2 19.0 152.1 6.37 2.84 0 237.6 .0 -4.7 22.3 3877 81267 90 210.3 49.5 133.5 6.37 2.62 0 257.4 .0 -4.7 23.3 3876 81273 96 233.4 98.4 109.4 6.37 2.31 0 282.1 .0 -4.7 24.4 3875 81279 102 262.4 148.5 92.4 6.37 2.05 0 312.1 .0 -4.7 25.5 3874 81285 108 281.1 184.6 78.2 <td>81231 54 13</td> <td>.0 130.2</td> <td></td> <td></td> <td></td> <td></td>	81231 54 13	.0 130.2				
81243 66 160.2 .0 159.7 .00 3.53 0 193.4 .0 -2.8 16.8 3881 81249 72 176.7 .0 171.5 .00 3.39 0 213.6 .0 -4.7 19.9 3880 81255 78 186.2 2.1 170.9 6.37 3.15 0 227.5 .0 -4.7 21.1 3879 81261 84 193.2 19.0 152.1 6.37 2.84 0 237.6 .0 -4.7 22.3 3877 81267 90 210.3 49.5 133.5 6.37 2.62 0 257.4 .0 -4.7 23.3 3876 81273 96 233.4 98.4 109.4 6.37 2.31 0 282.1 .0 -4.7 24.4 3875 81279 102 262.4 148.5 92.4 6.37 2.05 0 312.1 .0 -4.7 25.5 3874 81285 108 281.1 184.6 78.2 <td>81237 60 14</td> <td>.6.3 .0 146.3</td> <td></td> <td></td> <td>-2.7 15.5 3882</td> <td></td>	81237 60 14	.6.3 .0 146.3			-2.7 15.5 3882	
8125578186.22.1170.96.373.150227.5.0-4.721.138798126184193.219.0152.16.372.840237.6.0-4.722.338778126790210.349.5133.56.372.620257.4.0-4.723.338768127396233.498.4109.46.372.310282.1.0-4.724.4387581279102262.4148.592.46.372.050312.1.0-4.725.5387481285108281.1184.678.26.371.830330.7.5-4.731.0387381291114301.8213.771.76.371.660352.2.6-4.731.83872						
81261 84 193.2 19.0 152.1 6.37 2.84 0 237.6 .0 -4.7 22.3 3877 81267 90 210.3 49.5 133.5 6.37 2.62 0 257.4 .0 -4.7 23.3 3876 81267 96 233.4 98.4 109.4 6.37 2.31 0 282.1 .0 -4.7 24.4 3875 81279 102 262.4 148.5 92.4 6.37 2.05 0 312.1 .0 -4.7 25.5 3874 81285 108 281.1 184.6 78.2 6.37 1.83 0 330.7 .5 -4.7 31.0 3873 81291 114 301.8 213.7 71.7 6.37 1.66 0 352.2 .6 -4.7 31.8 3872						
8126790210.349.5133.56.372.620257.4.0-4.723.338768127396233.498.4109.46.372.310282.1.0-4.724.4387581279102262.4148.592.46.372.050312.1.0-4.725.5387481285108281.1184.678.26.371.830330.7.5-4.731.0387381291114301.8213.771.76.371.660352.2.6-4.731.83872						
81273 96 233.4 98.4 109.4 6.37 2.31 0 282.1 .0 -4.7 24.4 3875 81279 102 262.4 148.5 92.4 6.37 2.05 0 312.1 .0 -4.7 25.5 3874 81285 108 281.1 184.6 78.2 6.37 1.83 0 330.7 .5 -4.7 31.0 3873 81291 114 301.8 213.7 71.7 6.37 1.66 0 352.2 .6 -4.7 31.8 3872						
81279 102 262.4 148.5 92.4 6.37 2.05 0 312.1 .0 -4.7 25.5 3874 81285 108 281.1 184.6 78.2 6.37 1.83 0 330.7 .5 -4.7 31.0 3873 81291 114 301.8 213.7 71.7 6.37 1.66 0 352.2 .6 -4.7 31.8 3872						
81285108281.1184.678.26.371.830330.7.5-4.731.0387381291114301.8213.771.76.371.660352.2.6-4.731.83872						
81291 114 301.8 213.7 71.7 6.37 1.66 0 352.2 .6 -4.7 31.8 3872						
81297 120 270.5 222.2 33.7 6.37 1.02 0 352.2 1.3 -4.7 32.0 3871						
	81297 120 27	0.5 222.2 33.7	6.37 1.02	0 352.2 1.3	-4.7 32.0 3871	

TABLE 17. DETAILED SIMULATION PEST OUTPUT FILE. (OUTD)

STRUCTURE

Variable	Variable Name ¹ Header	2 Format	t ³
Line 1			
Run number ⁴	NREP	5 I	3
Run identifier	TITLER	10 C	25
Line 2			
Model name	MODEL	18 C	8
Crop name	CROPD	3 C	10
Line 3			
Experiment identifier, made up of:			
Institute code	INSTE	18 C	2
Site code	SITEE	0 C	2
Experiment number/abbreviation	EXPTNO	0 C	4
Crop group code	CROP	1 C	2
Experiment name (Treatment set and			
experimental condition names,			
separated by a semi-colon)	ENAME	18 C	60
Line 4			
Treatment number	TRTNO	11 I	2
Treatment name	TITLET	5 C	25
Line 5 ⁵			
Variable abbreviations		1 C	77+
Line 6 on			
Date (Year and days from Jan. 1)	YRDOY DATE	1 I	5
Crop age (days from planting)	DAP CDAY	1 I	5
Daily diseased leaf area increase, cm ² /	m ² /d DISLA DL	1 I	5
Daily % diseased leaf area increase, g/		1 R	51
Daily leaf area consumed, $m^2/m^2/d$	LAIDT DLAI	1 R	52
Daily leaf mass consumed, g/m ² /d	WLIDOT DLFM	1 R	52
Daily stem mass consumed, g/m ² /d	WSIDOT DSTM	1 R	52
Daily seed mass consumed, $g/m^2/d$	SWIDOT DSDM		5 2
Daily seed number consumed, $\#/m^2/d$	SDIDOT DSD#	1 R	5 2
Daily shell mass consumed, g/m ² /d	WSHIDT DSHM		5 2
Daily shell number consumed, $\#/m^2/d$	SHIDOT DSH#		5 2
Daily root mass consumed, g/m ² /d	WRIDOT DRTM		5 2
Daily root length density consumed, cm/c	-		5 2

- ¹ Abbreviations used as variable names in the IBSNAT models.
- ² Abbreviations suggested for use in header lines (those designated with '@') within the file. They correspond to the variable names used in the associated database.
- ³ Formats are presented as follows: number of leading spaces, variable type (Character = C, Real = R, Integer = I), variable width, and (if real) number of decimals.
- $^4~$ Each new run should be demarcated with `*RUN' at the beginning of this line in each file.
- ⁵ Additional information can be placed between lines 4 and 5, as required by a user, as illustrated in the example, and as documented for the Overview file in the text.

EXAMPLE PEST OUTPUT FILE

*PEST ASPECTS OUTPUT FILE *RUN : Pest and Diseases 1 : CRGR0940 - PEANUT MODEL EXPERIMENT : UFGA7602 PN PEANUT PEST TEST 1 TREATMENT 8 : LEAF, STEM, SEED, SHELL MASS CROP : PEANUT CULTIVAR : FLORUNNER - FLORUNNER VARS STARTING DATE : MAY 5 1976 PLANTING DATE : MAY 5 1976 PLANTS/m2 : 12.9 ROW SPACING : 31.cm WEATHER : UFGA 1976 SOIL : IBPN910015 TEXTURE : - Millhopper Fine Sand SOIL INITIAL C : DEPTH: 180cm EXTR. H20: 158.4mm NO3: .0kg/ha NH4: 0kq/ha WATER BALANCE : IRRIGATE ACCORDING TO FIELD SCHEDULE : 75 mm IN 4 APPLICATIONS IRRIGATION NITROGEN BAL. : NOT SIMULATED ; NO N-STRESS N FERTILIZER RESIDUE/MANURE : ENVIRONM. OPT. : DAYL= .0 SRAD= .0 TMAX= .0 TMIN= .0 RAIN= .0 CO2 = R 330.0 DEW = .0 WIND= .0 SIMULATION OPT : WATER :Y NITROGEN:N N-FIX:Y PESTS :Y PHOTO :C ET :R MANAGEMENT OPT : PLANTING:R IRRIG :R FERT :R RESIDUE:R HARVEST:R WTH:M @DATE CDAY DLA %DL% DLAI DLFM DSTM DSDM DSD# DSHM DSH# DRTM DRLV 76126 0 0 .0 .00 .00 .00 .00 .00 .00 .00 .00 .00 76129 3 .00 .00 .00 .00 .00 .00 .00 .00 .00 0 .0 .00 76132 6 0 .0 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 9 76135 0 .0 .00 .00 .00 .00 .00 .00 76138 12 0 .0 .00 .00 .00 .00 .00 .00 .00 .00 .00 76141 15 0 .0 .00 .00 .00 .00 .00 .00 .00 .00 .00 76144 18 0 .0 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0 76147 21 0 .00 .00 .00 .00 .00 .00 .00 .00 .00 24 0 .0 .00 .00 .00 .00 .00 .00 .00 .00 76150 .00 27 39 .00 .00 .00 .18 76153 .00 .08 .00 .00 .01 1.3 .00 .00 76156 30 100 2.5 .00 .00 .12 .00 .00 .42 .03 76159 33 235 3.8 .00 .00 .23 .00 .00 .00 .00 .68 .05 76162 36 459 5.0 .00 .00 .32 .00 .00 .00 .00 1.02 .08 76165 39 648 6.2 .00 .00 .35 .00 .00 .00 .00 1.87 .13 .00 2.75 794 7.5 .00 .00 .00 76168 42 .00 .00 .45 .17 .00 3.46 76171 45 1031 8.7 .00 .00 .69 .00 .00 .00 .22 .00 3.32 76174 48 1543 10.0 .00 .00 .81 .00 .00 .00 .21 76177 51 2313 11.3 .01 .60 1.33 .00 .00 .00 .00 3.31 .20 .39 76180 54 3200 12.5 .02 .75 1.54 .00 .76 .06 3.36 .20 .07 76183 57 4118 13.8 .02 .93 1.79 2.89 .26 1.47 3.16 .19 .87 .17 5.21 .19 4953 76186 60 15.0 .02 1.93 .51 2.61 3.28 .97 2.22 .23 6.53 3.22 3.54 .20 63 5869 16.3 .02 76189 .67 76192 66 6722 17.5 .03 1.13 2.41 .29 8.00 .83 3.88 3.33 .18 76195 69 7412 18.8 .02 .96 2.48 .34 9.66 .99 4.62 4.05 .21 76198 72 7761 20.0 .01 .58 1.81 .35 12.32 1.19 5.80 5.29 .26

CHAPTER FIVE. EXPERIMENT PERFORMANCE DATA FILES

Experiment performance data are contained in FILEP, FILED, FILEA and FILET, which the user generates using the formats shown in Tables 18 and 19. The correct formatting of FILEA and FILET is critical because these files link directly to the model(s). The purpose of these files is to present measured performance data for direct comparison with simulated results. FILEP is the basic performance data file, with information detailed at the replicate level for each treatment, arranged by plots. FILED would contain replicate performance data arranged by date of observations. In other words, FILEP and FILED are the basic performance data files, with information detailed at the replicate level for each treatment, arranged by plots in FILEP and by date of measurement in FILED. FILEA and FILET contain average values derived from the data in FILEP or FILED. FILEA uses one line of information per treatment and this one line is a summary of information of the entire treatment. The dates included on each line are of the main phenological events and the yield and yield components at final harvest, as well as other related variables. FILET contains one line of data for each observation date for each treatment. Averages are arranged in columns in order of treatment in FILEA, in order of date in the time-course file, FILET. The files will have a variable number of columns, depending on the data available. Each could have as few as one measured variable, or as many variables as measured. Each experimental data file, however, will always have an initial section with the institute and site codes and experiment number, the crop group code, and the experiment name. All columns have one leading blank and five spaces for data, and are headed by standard variable abbreviations (see Appendix C for a listing of abbreviations). Each data column, if appropriate, could also have header lines containing information on the date measurements were made, and on the factor by which data need to be multiplied to convert them to standard units. Examples are shown in Tables 18 and 19.

TABLE 18. Example of an Experiment Performance Data AveragesFILE (FILEA), Stored in the Data FILE, UFGA8101.SBA.

*EXP.DATA (A): UFGA8101SB COBB, IRRIGATED, VEG. & REPROD. STRESS

@	TRNO	HWAM	HWUM	H#AM	H#UM	LAIX	CWAM	BWAH	ADAT	MDAT	PD1T	PDFT	PWAM
	1	3502.	.1476	2374.	1.88	6.25	6851.	2137.	224	295	243	243	4526.
	2	3355.	.1529	2195.	1.84	4.48	6109.	1587.	225	295	245	245	4403.
	3	2738.	.1292	2119.	1.77	6.25	5881.	2064.	224	295	243	243	3690.

TABLE 19. EXAMPLE OF AN EXPERIMENT TIME-COURSE DATA FILE (FILET), SHOWING TIME SERIES FOR TREATMENT 1, STORED IN THE DATA FILE, UFGA8101.SBT.

*EXP.DATA (T): UFGA8101SB COBB, IRRIGATED, VEG. & REPROD. STRESS

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	@TRNO	DATE	L#SD	LAID	P#AD	SWAD	GWAD	LWAD	CWAD	PWAD	SHAD	G#AD	SH%D	SLAD
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	81188	.8	.11	Ο.	18	Ο.	40	58	0.	Ο.	Ο.	00.00	272
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	81190	1.4	.15	Ο.	20	Ο.	53	74	Ο.	Ο.	Ο.	00.00	277
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	81196	2.5	.37	Ο.	70	Ο.	144	214	0.	Ο.	Ο.	00.00	254
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	81204	6.3	1.27	Ο.	254	Ο.	350	604	Ο.	Ο.	Ο.	00.00	360
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	81208	6.8	1.75	0.	404	0.	497	901	0.	Ο.	0.	00.00	351
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	81210	7.1	1.75	0.	437	0.	499	936	0.	Ο.	0.	00.00	350
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	81212	7.4	1.74	0.	462	0.	525	987	0.	0.	0.	00.00	332
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	81215	7.9	2.48	0.	678	0.	722	1400	0.	Ο.	0.	00.00	344
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	81219	8.6	3.11	0.	1005	0.	864	1869	0.	0.	0.	00.00	359
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	81223	10.3	3.47	0.	1260	0.	980	2240	0.	0.	0.	00.00	354
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	81225	10.4	4.20	0.	1384	0.	1102	2486	0.	0.	0.	00.00	380
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	81229	10.6	4.57	0.	1758	0.	1317	3075	0.	Ο.	0.	00.00	348
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	81233	-99	4.33	0.	1896	0.	1206	3102	0.	0.	0.	00.00	357
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	81237	14.1	5.00	50.	2163	0.	1469	3636	4	4	0.	00.00	341
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	81245	14.4	5.87	757.	2704	0.	1717	4510	89	89	0.	00.00	342
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	81246	-99	6.25	-99	2897	0.	1750	4849	202	202	0.	00.00	359
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	81251	11.8	5.34	992.	2639	0.	1657	4657	361	361	0.	00.00	322
1 81259 -99 5.06 -99 3674 0. 1651 6624 1299 1299 0. 00.000 306 1 81261 15.3 4.74 1505 2928 557 1694 5992 1370 813 2918 40.66 280 1 81266 -99 4.50 -99 3270 919 1612 6794 1912 993 3470 48.06 281 1 81267 15.0 4.10 1442 2566 1037 1409 5957 1983 946 2439 52.29 291 1 81271 16.5 3.85 1184 2419 1294 1549 6154 2185 891 2142 59.22 249 1 81273 -99 4.10 -99 2876 1643 1572 6998 2550 907 2511 64.43 261 1 81274 17.3 4.33 1552 3287 2437 1730 8578 3561 1124 3063 68.44	1	81252	-99	4.85	-99	2727	0.	1472	4621	421	421	0.	00.00	330
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	81257	15.3	4.49	1467	2940	0.	1704	5504	860	860	0.	00.00	264
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	81259	-99	5.06	-99	3674	0.	1651	6624	1299	1299	0.	00.00	306
18126715.04.10144225661037140959571983946243952.2929118127116.53.85118424191294154961542185891214259.22249181273-994.10-9928761643157269982550907251164.4326118127417.34.331552328724371730857835611124306368.4425018127816.03.17119326031804139867322732928210966.03227181280-993.96-99296223871532791334191032243469.82259181287-993.83-99302432781525885843101032269076.06251181294-992.18-9924833548810786945761028246977.53268181301-99.61-991966320821563234142934222377.45287	1	81261	15.3	4.74	1505	2928	557	1694	5992	1370	813	2918	40.66	280
1 81271 16.5 3.85 1184 2419 1294 1549 6154 2185 891 2142 59.22 249 1 81273 -99 4.10 -99 2876 1643 1572 6998 2550 907 2511 64.43 261 1 81274 17.3 4.33 1552 3287 2437 1730 8578 3561 1124 3063 68.44 250 1 81278 16.0 3.17 1193 2603 1804 1398 6732 2732 928 2109 66.03 227 1 81280 -99 3.96 -99 2962 2387 1532 7913 3419 1032 2434 69.82 259 1 81287 -99 3.83 -99 3024 3278 1525 8858 4310 1032 2690 76.06 251 1 81294 -99 2.18 -99 2483 3548 810 7869 4576 1028 2469 77.53 </td <td>1</td> <td>81266</td> <td>-99</td> <td>4.50</td> <td>-99</td> <td>3270</td> <td>919</td> <td>1612</td> <td>6794</td> <td>1912</td> <td>993</td> <td>3470</td> <td>48.06</td> <td>281</td>	1	81266	-99	4.50	-99	3270	919	1612	6794	1912	993	3470	48.06	281
181273-994.10-9928761643157269982550907251164.4326118127417.34.331552328724371730857835611124306368.4425018127816.03.17119326031804139867322732928210966.03227181280-993.96-99296223871532791334191032243469.82259181287-993.83-99302432781525885843101032269076.06251181294-992.18-9924833548810786945761028246977.53268181301-99.61-991966320821563234142934222377.45287	1	81267	15.0	4.10	1442	2566	1037	1409	5957	1983	946	2439	52.29	291
18127417.34.331552328724371730857835611124306368.4425018127816.03.17119326031804139867322732928210966.03227181280-993.96-99296223871532791334191032243469.82259181287-993.83-99302432781525885843101032269076.06251181294-992.18-9924833548810786945761028246977.53268181301-99.61-991966320821563234142934222377.45287	1	81271	16.5	3.85	1184	2419	1294	1549	6154	2185	891	2142	59.22	249
18127816.03.17119326031804139867322732928210966.03227181280-993.96-99296223871532791334191032243469.82259181287-993.83-99302432781525885843101032269076.06251181294-992.18-9924833548810786945761028246977.53268181301-99.61-991966320821563234142934222377.45287	1	81273	-99	4.10	-99	2876	1643	1572	6998	2550	907	2511	64.43	261
181280-993.96-99296223871532791334191032243469.82259181287-993.83-99302432781525885843101032269076.06251181294-992.18-9924833548810786945761028246977.53268181301-99.61-991966320821563234142934222377.45287	1	81274	17.3	4.33	1552	3287	2437	1730	8578	3561	1124	3063	68.44	250
181287-993.83-99302432781525885843101032269076.06251181294-992.18-9924833548810786945761028246977.53268181301-99.61-991966320821563234142934222377.45287	1	81278	16.0	3.17	1193	2603	1804	1398	6732	2732	928	2109	66.03	227
1 81294 -99 2.18 -99 2483 3548 810 7869 4576 1028 2469 77.53 268 1 81301 -99 .61 -99 1966 3208 215 6323 4142 934 2223 77.45 287	1	81280	-99	3.96	-99	2962	2387	1532	7913	3419	1032	2434	69.82	259
1 81301 -99 .61 -99 1966 3208 215 6323 4142 934 2223 77.45 287	1	81287	-99	3.83	-99	3024	3278	1525	8858	4310	1032	2690	76.06	251
	1	81294	-99	2.18	-99	2483	3548	810	7869	4576	1028	2469	77.53	268
1 81308 -99 .44 -99 2307 3796 163 7378 4909 1113 2524 77.33 276	1	81301	-99	.61	-99	1966	3208	215	6323	4142	934	2223	77.45	287
	1	81308	-99	.44	-99	2307	3796	163	7378	4909	1113	2524	77.33	276

CHAPTER SIX. DISCUSSION

These proposed file structures resulted from the interest in an earlier set of crop model inputs and outputs published by IBSNAT (1986, 1990). The earlier standards have been used for a number of crop models in the integrated software package called DSSAT (Decision Support System for Agrotechnology Transfer). This earlier attempt demonstrated the value of such standards in facilitating the organization and exchange of crop weather, soil, and plot data among modeling and model user groups at various institutions. The inputs and outputs described in this document represent a wider range of crop, weather, and soil conditions, and should be nonspecific to a crop model. By expanding the list of inputs, however, it is more likely that some of the inputs will not be available for all experiments or for all intended applications. This creates a dilemma for modelers, who must decide which of the defined variables are to be a minimum set required to run their models, or must include capabilities in their models to recognize and estimate missing variables. The same is true for outputs. However, this does not create the same difficulty as the lack of inputs; it means that only parts of the models can be validated in any one experiment. Nonetheless, a basic minimum data set is needed for effective interpretation of all experiments, regardless of model validation applications. Such a minimum data set has been defined (IBSNAT, 1988), and vigorous efforts should be made to obtain such information in all experiments. The files described here reflect this minimum data set, and thus form part of an overall system that encompasses forms for data collection in the field, files for data storage, and files for use by various analysis programs. Further changes in the model input component of this system will inevitably have an impact on the other components. The design of the system as an entity makes it easier to accommodate such changes than would be the case if each part was considered separately. It is hoped that such an advantage can be

REFERENCES

maintained and strengthened in the future.

- Hunt, L.A., J.W. Jones, P.K. Thornton, G. Hoogenboom, D.T. Imamura, G.Y.Tsjui and U. Singh. 1994. Accessing Data, Models and Application Programs. *In:* Tsuji, G.Y., G. Uehara and S. Balas (eds.). DSSAT v3. Vol. 1-3. University of Hawaii, Honolulu, HI.
- Imamura, D.T. and A.Y.C. Tang. 1994. Converting from DSSAT v2.1 to DSSAT v3 data files and formats. *In:* Tsuji, G.Y., G. Uehara and S. Balas (eds.). DSSAT v3. Vol. 1-5. University of Hawaii, Honolulu, HI.
- Imamura, D.T., J.W. Jones, P.K. Thornton and G. Hoogenboom. 1994. Creating management files to run models and document experiments.. *In:* Tsuji, G.Y., G. Uehara and S. Balas (eds.). DSSAT v3. Vol. 1-4. University of Hawaii, Honolulu, HI.
- International Benchmark Sites Network for Agrotechnology Transfer. 1986. Technical Report5: Documentation for the IBSNAT crop model input and output files, version 1.0. Department of Agronomy and Soil Science, College of Tropical Agriculture and Human Resources, University of Hawaii, Honolulu.
- International Benchmark Sites Network for Agrotechnology Transfer. 1988. Technical Report1: Experimental design and data collection procedures for IBSNAT; 3rd. edition, revised. Department of Agronomy and Soil Science, College of Tropical Agriculture and Human Resources, University of Hawaii, Honolulu.
- International Benchmark Sites Network for Agrotechnology Transfer. 1989. DSSAT version 2.1 user's guide. Department of Agronomy and Soil Science, College of Tropical Agriculture and Human Resources, University of Hawaii, Honolulu.
- International Benchmark Sites Network for Agrotechnology Transfer. 1990. Technical Report5: Documentation for the IBSNAT crop model input and output files, version 1.1. Department of Agronomy and Soil Science, College of Tropical Agriculture and Human Resources, University of Hawaii, Honolulu.
- Soil Survey Staff. 1975. Soil Taxonomy, A basic system of soil classification for making and interpreting soil surveys. Soil Conservation Service. U.S. Dept. Agr: Handbook 436. U.S. Govt. Printing Office, Washington, D.C.

APPENDIX A. WEATHER LIST AND SOIL PROFILE LIST FILES

WEATHER LIST FILE

This file contains a list of weather data files which are available for use by the simulation models. It has one line of information (see Table 20, below) for each weather data set which gives the file name, site name, latitude, longitude, and elevation. The actual weather file used for a particular experiment is specified in the experiment file (FILEX). The weather list file typically would be used in sensitivity analysis where a user may wish to examine crop performance under alternate weather conditions.

TABLE 20. EXAMPLE WEATHER LIST FILE. (WTH.LST)

*WEATHER LIST

@#	FILENAME	EXT	SITE NAME	LAT	LONG	ELEV.	TAV	TAMP.
1	CCPA8601	WTH	CIAT, PALMIRA, COLOMBIA	3.5	-76.4	-99	-99.0	-99.0
2	CCPA8701	WTH	CIAT, PALMIRA, COLOMBIA	3.5	-76.4	-99	-99.0	-99.0
3	DTSP8501	WTH	SUPHAN_BURI, THAILAND	14.5	100.1	-99	-99.0	-99.0
4	EBG08701	WTH	CNPAF, GOIANIA, BRAZIL	-16.3	-49.1	-99	-99.0	-99.0
5	IGQU8901	WTH	ICTA,QUEZADA,GUATEMALA	14.3	-90.0	-99	-99.0	-99.0
6	IRMZ8501	WTH	IRRI,MUNOZ,PHILIPPINES	15.7	120.9	-99	-99.0	-99.0
7	IRMZ8601	WTH	IRRI,MUNOZ,PHILIPPINES	15.7	120.9	-99	-99.0	-99.0
8	IRPI8001	WTH	IRRI,PILA,PHILIPPINES	14.2	121.3	50	27.0	3.8
9	IRPI8501	WTH	IRRI, PILA, PHILIPPINES	14.2	121.3	50	27.0	3.8
10	IRPI8601	WTH	IRRI, PILA, PHILIPPINES	14.2	121.3	50	27.0	3.8
11	IUCA7901	WTH	CASTANA,IOWA,USA	42.2	-93.7	-99	-99.0	-99.0
12	KSAS8101	WTH	ASHLAND, KANSAS, USA	39.0	-97.0	-99	-99.0	-99.0
13	UBKA8601	WTH	KAJONDI_FARM,BURUNDI	-3.3	30.0	-99	-99.0	-99.0
14	UFGA7601	WTH	GAINESVILLE, FLORIDA, USA	29.6	-82.4	10	20.9	7.4
15	UFGA7801	WTH	GAINESVILLE, FLORIDA, USA	29.6	-82.4	10	20.9	7.4
16	UFGA7901	WTH	GAINESVILLE, FLORIDA, USA	29.6	-82.4	10	20.9	7.4
17	UFGA8001	WTH	GAINESVILLE, FLORIDA, USA	29.6	-82.4	10	20.9	7.4
18	UFGA8101	WTH	GAINESVILLE, FLORIDA, USA	29.6	-82.4	10	20.9	7.4
19	UFGA8201	WTH	GAINESVILLE, FLORIDA, USA	29.6	-82.4	10	20.9	7.4
20	UFGA8401	WTH	GAINESVILLE, FLORIDA, USA	29.6	-82.4	10	20.9	7.4
21	UFGA8501	WTH	GAINESVILLE, FLORIDA, USA	29.6	-82.4	10	20.9	7.4
22	UFGA8601	WTH	GAINESVILLE, FLORIDA, USA	29.6	-82.4	10	20.9	7.4
23	UFQU7901	WTH	QUINCY,FLORIDA,USA	30.6	-86.4	-99	-99.0	-99.0

Soil Profile List File

This file contains a list of soil profiles which are available for use by the simulation models. It has one line of information (see Table 21, below) for each soil profile which gives the file name, soil code, texture, depth and description. The actual soil profile used for a particular experiment is specified in the experiment file (FILEX).

TABLE 21. EXAMPLE SOIL PROFILE LIST FILE. (SOL.LST)

```
*SOIL LIST
```

@#	FILENAME	EXT	SOIL CODE	TEXTURE	DEPTH	DESCRIPTION
1	SOIL	SOL	GAPN930001	SALO	178	FACEVILLE
2	SOIL	SOL	IBBN910015	FSA	180	MILLHOPPER FINE SAND
3	SOIL	SOL	IBBN910030	-99	209	МЗ
4	SOIL	SOL	IBBN910038	-99	150	SAN_FERNANDO,QUEZADA
5	SOIL	SOL	IBMZ910014	FSA	180	MILLHOPPER FINE SAND
6	SOIL	SOL	IBPN910015	FSA	180	MILLHOPPER FINE SAND
7	SOIL	SOL	IBRI910001	-99	50	ANDAQUEPTIC HAPLAQUOLL
8	SOIL	SOL	IBRI910002	-99	50	VERTIC TROPAQUEPT
9	SOIL	SOL	IBRI910063	-99	135	UPLAND
10	SOIL	SOL	IBRI910071	-99	51	SUPHAN LOWLAND
11	SOIL	SOL	IBSB910015	FSA	180	MILLHOPPER FINE SAND
12	SOIL	SOL	IBSB910017	SALO	203	ORANGEBURG SANDY LOAM
13	SOIL	SOL	IBSB910026	SILO	180	IDA SILT LOAM
14	SOIL	SOL	IBWH910018	CSI	180	HAYNIE

APPENDIX B. EXPERIMENT DETAILS CODES

Headers used in the @ line to identify variables are listed first, codes to identify methods, chemicals, etc. are listed next in sections that relate to specific aspects (Chemicals;Crop and weed species;Diseases and pests;Drainage; Environment modification factors; Fertilizers, inoculants and amendments; Harvest components;Harvest size categories;Methods-fertilizer and chemical applications; Methods-irrigation and water management;Methods-soil analysis; Planting materials; Plant distribution; Residues and organic fertilizers; Rotations;Soil texture;and Tillage implements).

The fields in the file are as follows:

CDE The 'universal' code used to facilitate data interchange.

- DESCRIPTION A description of the code, with units.
- SO The source of the codes (IB=IBSNAT). Codes added by a user should be referenced in this field and the name and address of the person adding the code should be entered as a comment (ie.with a '!' in column 1) below this note. This is important to ensure that information from different workers can be easily integrated. Users adding codes should also ensure that those constructed by adding a number to section code (eg.FE001,CH001) are clearly identified with a letter in the this position (eg.FEK01 for a fertilizer code added by someone with a family name beginning with K).

*Headers		
@CDE	DESCRIPTION	SO
ADDRESS	Contact address of principal scientist	IB
С	Crop component number (default = 1)	IB
CDATE	Application date, year + day or days from planting	IB
CHAMT	Chemical application amount, kg ha-1	IB
CHCOD	Chemical material, code	IB
CHDEP	Chemical application depth, cm	IB
CHME	Chemical application method, code	IB
CHNOTES		IB
CNAME	Cultivar name	IB
CNOTES	Cultivar details (Type, pedigree, etc.)	IB
CR	Crop code	IB
CU	Cultivar level	IB
ECO2	CO2 adjustment, A,S,M,R + vpm	IB
EDATE	Emergence date, earliest treatment	IB
EDAY	Daylength adjustment, A,S,M,R + h	IB
EDEW	Humidity adjustment, A,S,M,R + oC	IB
EMAX	Temperature (maximum) adjustment, A,S,M,R + oC	IB
EMIN	Temperature (minimum) adjustment, A,S,M,R + oC	IB
ERAD	Radiation adjustment, A,S,M,R + MJ m-2day-1	IB
ERAIN	Precipitation adjustment, A,S,M,R + mm	IB
EWIND	Wind adjustment, A,S,M,R + km day-1	IB
FACD	Fertilizer application/placement, code	IB
FAMC	Ca in applied fertilizer, kg ha-1	IB
FAMK	K in applied fertilizer, kg ha-1	IB
FAMN	N in applied fertilizer, kg ha-1	IB
FAMO	Other elements in applied fertilizer, kg ha-1	IB
FAMP	P in applied fertilizer, kg ha-1	IB
FDATE	Fertilization date, year + day or days from planting	IB
FDEP	Fertilizer incorporation/application depth, cm	IB
FL	Field level	IB
FLDD	Drain depth, cm	IB
FLDS	Drain spacing, m	IB
FLDT	Drainage type, code	IB
FLOB	Obstruction to sun, degrees	IB
FLSA	Slope and aspect, degrees from horizontal plus direction (W, NW, etc.	IB
FLST	Surface stones (Abundance, % + Size, S,M,L)	IB
FMCD	Fertilizer material, code	IB
FOCD	Other element code, e.g.,. MG	IB
HAREA	Harvest area, m-2	IB
HARM	Harvest method	IB
HCOM	Harvest component, code	IB
HDATE	Harvest date, year + day or days from planting	IB
HL	Harvest level	IB

HLEN	Harwoot you longth m	IB
	Harvest row length, m	
HPC	Harvest percentage, %	IB
HRNO	Harvest row number	IB
HSIZ	Harvest size group, code	IB
HSTG	Harvest stage	IB
IAME	Method for automatic applications, code	IB
IAMT	Amount per automatic irrigation if fixed, mm	IB
IC	Initial conditions level	IB
ICBL	Depth, base of layer, cm	IB
ICDAT	Initial conditions measurement date, year + days	IB
ICND	Nodule weight from previous crop, kg ha-1	IB
ICRE	Rhizobia effectiveness, 0 to 1 scale	IB
ICRN	Rhizobia number, 0 to 1 scale	IB
ICRT	Root weight from previous crop, kg ha-1	IB
IDATE	Irrigation date, year + day or days from planting	IB
IDEP	Management depth for automatic application, cm	IB
ID_FIELD	Field ID (Institute + Site + Field)	IB
ID_SOIL	Soil ID (Institute + Site + Year + Soil)	IB
IEFF	Irrigation application efficiency, fraction	IB
IEPT	End point for automatic appl., % of max. available	IB
INGENO	Cultivar identifier	IB
IOFF	End of automatic applications, growth stage	IB
IROP	Irrigation operation, code	IB
IRVAL	Irrigation amount, depth of water/watertable, etc., mm	IB
ITHR	Threshold for automatic appl., % of max. available	IB
MC	Chemical applications level	IB
ME	Environment modifications level	IB
MF	Fertilizer applications level	IB
MH	Harvest level	IB
MI	Irrigation level	IB
MP	Planting level	IB
MR	Residue level	IB
MT	Tillage level	IB
NOTES	Notes	IB
0	Rotation component - option (default = 1)	IB
ODATE	Environmental modification date, year + day or days from planting	IB
PAGE		IB
	Transplant age, days	
PAREA	Gross plot area per rep, m-2	IB
PCR	Previous crop code	IB
PDATE	Planting date, year + days from Jan. 1	IB
PENV	Transplant environment, ~C	IB
PEOPLE	Names of scientists	IB
PLAY	Plot layout	IB
PLDP	Planting depth, cm	IB
PLDR	Plots relative to drains, degrees	IB
PLDS	Planting distribution, row R, broadcast B, hill H	IB
PLEN	Plot length, m	IB
PLME	Planting method, code	IB
PLOR	Plot orientation, degrees from N	IB
PLPH	Plants per hill (if appropriate)	IB
PLRD	Row direction, degrees from N	IB
PLRS	Row spacing, cm	IB
		IB
PLSP	Plot spacing, cm	
PLWT	Planting material dry weight, kg ha-1	IB
PPOE	Plant population at emergence, m-2	IB
PPOP	Plant population at seeding, m-2	IB
PRNO	Rows per plot	IB
R	Rotation component - number (default = 1)	IB
RACD	Residue application/placement, code	IB
RAMT	Residue amount, kg ha-1	IB
RCOD	Residue material, code	IB
RDATE	Incorporation date, year + days	IB
RDEP	Residue incorporation depth, cm	IB
RDMC	Residue dry matter content, %	IB
RESK	Residue potassium concentration, %	IB
RESN	Residue nitrogen concentration, %	IB
RESP	Residue phosphorus concentration, %	IB
RINP	Residue incorporation percentage, %	IB
SA	Soil analysis level	IB
SABD	Bulk density, moist, g cm-3	IB
SABL	Depth, base of layer, cm	IB

```
DSSAT v3, Volume 2 • DSSAT v3,
```

SADAT Analysis date, year + days from Jan. 1 SAHB pH in buffer SAHW pH in water Potassium, exchangeable, cmol kg-1 SAKE SANT Total nitrogen, g kg-1 SAOC Organic carbon, g kg-1 SAPX Phosphorus, extractable, mg kg-1 SH20 Water, cm3 cm-3 SITE(S) Name and location of experimental site(s) SLDP Soil depth, cm Soil texture SLTX Simulation control level SM SMHB pH in buffer determination method, code SMKE Potassium determination method, code SMPX Phosphorus determination method, code SNH4 Ammonium, KCl, g elemental N Mg-1 soil Nitrate, KCl, g elemental N Mg-1 soil SNO3 Tillage date, year + day TDATE Tillage depth, cm TDEP TIMPL Tillage implement, code TL Tillage level TN Treatment number TNAME Treatment name WSTA Weather station code (Institute + Site) *Chemicals (Herbicides, Insecticides, Fungicides, etc.) @CDE DESCRIPTION CH001 Alachlor (Lasso), Metolachlor (Dual) [Herbicide] CH002 Propanil [Herbicide] CH003 Trifluralin [Herbicide] CH004 Dalapon [Herbicide] CH005 MCPA [Herbicide] CH006 2.4-D [Herbicide] CH007 2,4,5-T [Herbicide] CH008 Pendimethalin [Herbicide] CH009 Atrazine [Herbicide] CH010 Diquat [Herbicide] CH011 Paraquat [Herbicide] CH021 Carbaryl, Sevin, Septene [Insecticide] CH022 Malathion, Mercaptothion [Insecticide] CH023 Naled [Insecticide] CH024 Dimethoate [Insecticide] CH025 Fention [Insecticide] CH026 Diazinon, Basudin [Insecticide] CH027 Ethion, Diethion [Insecticide] CH028 Oxydemeton-Methyl [Insecticide] CH029 Azinphos-Methyl [Insecticide] CH030 Phosphamidon [Insecticide] CH031 Mevinphosl [Insecticide] CH032 Methyl Parathion [Insecticide] CH033 Parathion [Insecticide] CH034 DDT [Insecticide] CH035 BHC, HCH [Insecticide] CH036 Chlordane [Insecticide] CH037 Heptachlor [Insecticide] CH038 Toxaphene [Insecticide] CH039 Aldrin [Insecticide] CH040 Dieldrin [Insecticide] CH041 Endrin, Nendrin [Insecticide] CH042 Methomyl, Lannat [Insecticide] CH043 Thiotex [Insecticide] CH044 Furadan [Insecticide] CH045 Endosulfan [Insecticide] CH051 Captan [Fungicide] CH052 Benomyl [Fungicide] CH053 Zineb [Fungicide] CH054 Maneb [Fungicide] CH055 Mancozeb [Fungicide] CH056 Tilt [Fungicide] CH057 Rhizobium (for legume crops) *Crop and Weed Species

```
DSSAT v3, Volume 2 • DSSAT v3,
```

IΒ

IΒ

IΒ

ΤB

ΤB

TΒ

TB

IΒ

ΙB

ΙB

ΙB

IΒ

IΒ

ΙB

ΙB

IΒ

IΒ

IΒ

ΤB

ΤB

TΒ

TB

TB

IΒ

SO

IΒ

ΙB

ΙB

IΒ

IΒ

IΒ

ΤB

ΤB

TΒ

TB

TB

ΙB

IΒ

ΙB

IΒ

IΒ

ΙB

IΒ

ΙB

IΒ

IΒ

ΤB

ΤB

TΒ

TB

TB

IΒ

ΙB

ΙB

IΒ

IΒ

IΒ

IΒ

ΤB

IΒ

IΒ

ΤB

ΤB

ΤB

TB

IΒ

IΒ

IΒ

@CDE		
	DESCRIPTION	SO
AR	Aroid	IB
AL	Alfalfa/Lucerne	IB
BA	Barley	IB
BN	Dry bean	IB
BS	Beet sugar	IB
BW	Broad leaf weeds	IB
CO	Cotton	IB
CS	Cassava	IB
FA	Fallow	IB
GW	Grass weeds	IB
	Pearl Millet	IB
ML		
MZ	Maize	IB
OA	Oats	IB
PN	Peanut	IB
PT	Potato	IB
RI	Rice	IB
SB	Soybean	IB
SC	Sugar Cane	IB
SG	Grain sorghum	IB
ST	Shrubs/trees	IB
WH	Wheat	IB
*Disea	se and Pest Organisms	
	-	
@CDE	DESCRIPTION	SO
!Examp	les of codes that have been used are given below.	IB
CEW	Corn earworm (Heliothis zea), no. m-2	IB
VBC	Velvetbean caterpillar (Anticarsia gemmatalis), no. m-2	IB
SBL	Soybean looper (Pseudoplusia includens), no. m-2	IB
SKB	Southern green stinkbug (Mezara viridula), no. m-2	IB
RKN	Root-knot nematode (Meloidogyne spp.), no. cm-3 soil	IB
CUT	Cutworm, no. m-2	IB
+Dere in		
*Drain		
@CDE	DESCRIPTION	SO
DR000	No drainage	IB
	no arariage	
DD 0 0 1	Ditakan	TD
	Ditches	IB
	Ditches Sub-surface tiles	IB IB
DR002	Sub-surface tiles	IB
DR002		
DR002 DR003	Sub-surface tiles Surface furrows	IB
DR002 DR003	Sub-surface tiles	IB
DR002 DR003	Sub-surface tiles Surface furrows onment Modification Factors	IB
DR002 DR003 *Envir @CDE	Sub-surface tiles Surface furrows onment Modification Factors DESCRIPTION	IB IB SO
DR002 DR003 *Envir @CDE A	Sub-surface tiles Surface furrows onment Modification Factors DESCRIPTION Add	IB IB SO IB
DR002 DR003 *Envir @CDE	Sub-surface tiles Surface furrows onment Modification Factors DESCRIPTION	IB IB SO
DR002 DR003 *Envir @CDE A	Sub-surface tiles Surface furrows onment Modification Factors DESCRIPTION Add	IB IB SO IB
DR002 DR003 *Envir @CDE A S M	Sub-surface tiles Surface furrows onment Modification Factors DESCRIPTION Add Subtract Multiply	IB IB SO IB IB IB
DR002 DR003 *Envir @CDE A S	Sub-surface tiles Surface furrows onment Modification Factors DESCRIPTION Add Subtract	IB IB SO IB IB
DR002 DR003 *Envir @CDE A S M R	Sub-surface tiles Surface furrows onment Modification Factors DESCRIPTION Add Subtract Multiply Replace	IB IB SO IB IB IB
DR002 DR003 *Envir @CDE A S M R	Sub-surface tiles Surface furrows onment Modification Factors DESCRIPTION Add Subtract Multiply	IB IB SO IB IB IB
DR002 DR003 *Envir @CDE A S M R	Sub-surface tiles Surface furrows onment Modification Factors DESCRIPTION Add Subtract Multiply Replace lizers, Inoculants and Amendments	IB IB SO IB IB IB
DR002 DR003 *Envir @CDE A S M R *Ferti @CDE	Sub-surface tiles Surface furrows onment Modification Factors DESCRIPTION Add Subtract Multiply Replace lizers, Inoculants and Amendments DESCRIPTION	IB IB SO IB IB IB SO
DR002 DR003 *Envir @CDE A S M R *Ferti @CDE FE001	Sub-surface tiles Surface furrows onment Modification Factors DESCRIPTION Add Subtract Multiply Replace lizers, Inoculants and Amendments DESCRIPTION Ammonium nitrate	IB IB SO IB IB IB SO IB
DR002 DR003 *Envir @CDE A S M R *Ferti @CDE FE001 FE002	Sub-surface tiles Surface furrows onment Modification Factors DESCRIPTION Add Subtract Multiply Replace lizers, Inoculants and Amendments DESCRIPTION Ammonium nitrate Ammonium sulfate	IB IB SO IB IB IB SO
DR002 DR003 *Envir @CDE A S M R *Ferti @CDE FE001 FE002	Sub-surface tiles Surface furrows onment Modification Factors DESCRIPTION Add Subtract Multiply Replace lizers, Inoculants and Amendments DESCRIPTION Ammonium nitrate	IB IB SO IB IB IB SO IB
DR002 DR003 *Envir @CDE A S M R *Ferti @CDE FE001 FE002 FE003	Sub-surface tiles Surface furrows onment Modification Factors DESCRIPTION Add Subtract Multiply Replace lizers, Inoculants and Amendments DESCRIPTION Ammonium nitrate Ammonium sulfate Ammonium sulfate	IB IB SO IB IB IB SO IB IB IB
DR002 DR003 *Envir @CDE A S M R *Ferti @CDE FE001 FE002 FE003 FE004	Sub-surface tiles Surface furrows onment Modification Factors DESCRIPTION Add Subtract Multiply Replace lizers, Inoculants and Amendments DESCRIPTION Ammonium nitrate Ammonium sulfate Anmonium-nitrate-sulfate Anhydrous ammonia	IB SO IB IB IB IB IB IB IB IB
DR002 DR003 *Envir @CDE A S M R *Ferti @CDE FE001 FE002 FE003 FE004 FE005	Sub-surface tiles Surface furrows onment Modification Factors DESCRIPTION Add Subtract Multiply Replace lizers, Inoculants and Amendments DESCRIPTION Ammonium nitrate Ammonium sulfate Ammonium-nitrate-sulfate Ahhydrous ammonia Urea	IB SO IB IB IB IB IB IB IB IB IB
DR002 DR003 *Envir @CDE A S M R *Ferti @CDE FE001 FE002 FE003 FE004	Sub-surface tiles Surface furrows onment Modification Factors DESCRIPTION Add Subtract Multiply Replace lizers, Inoculants and Amendments DESCRIPTION Ammonium nitrate Ammonium sulfate Anmonium-nitrate-sulfate Anhydrous ammonia	IB SO IB IB IB IB IB IB IB IB
DR002 DR003 *Envir @CDE A S M R *Ferti @CDE FE001 FE002 FE003 FE004 FE005 FE006	Sub-surface tiles Surface furrows onment Modification Factors DESCRIPTION Add Subtract Multiply Replace lizers, Inoculants and Amendments DESCRIPTION Ammonium nitrate Ammonium sulfate Ammonium-nitrate-sulfate Anhydrous ammonia Urea Diammnoium phosphate	IB IB IB IB IB IB IB IB IB IB IB IB
DR002 DR003 *Envir @CDE A S M R *Ferti @CDE FE001 FE002 FE003 FE004 FE005 FE006 FE005	Sub-surface tiles Surface furrows onment Modification Factors DESCRIPTION Add Subtract Multiply Replace lizers, Inoculants and Amendments DESCRIPTION Ammonium nitrate Anmonium sulfate Anmonium-nitrate-sulfate Anhydrous ammonia Urea Diammonium phosphate Monoammonium phosphate	IB IB IB IB IB IB IB IB IB IB IB IB IB I
DR002 DR003 *Envir @CDE A S M R *Ferti @CDE FE001 FE002 FE003 FE004 FE005 FE006 FE007 FE008	Sub-surface tiles Surface furrows onment Modification Factors DESCRIPTION Add Subtract Multiply Replace lizers, Inoculants and Amendments DESCRIPTION Ammonium nitrate Ammonium sulfate Ammonium sulfate Anmonium sulfate Anhydrous ammonia Urea Diammnoium phosphate Monoammonium phosphate Calcium nitrate	IB IB IB IB IB IB IB IB IB IB IB IB IB I
DR002 DR003 *Envir @CDE A S M R *Ferti @CDE FE001 FE002 FE003 FE004 FE005 FE006 FE005	Sub-surface tiles Surface furrows onment Modification Factors DESCRIPTION Add Subtract Multiply Replace lizers, Inoculants and Amendments DESCRIPTION Ammonium nitrate Anmonium sulfate Anmonium-nitrate-sulfate Anhydrous ammonia Urea Diammonium phosphate Monoammonium phosphate	IB IB IB IB IB IB IB IB IB IB IB IB IB I
DR002 DR003 *Envir @CDE A S M R *Ferti @CDE FE001 FE002 FE003 FE004 FE005 FE006 FE007 FE008 FE009	Sub-surface tiles Surface furrows onment Modification Factors DESCRIPTION Add Subtract Multiply Replace lizers, Inoculants and Amendments DESCRIPTION Ammonium nitrate Ammonium sulfate Ammonium-nitrate-sulfate Anhydrous ammonia Urea Diammnoium phosphate Monoammonium phosphate Calcium nitrate Aqua ammonia	IB IB IB IB IB IB IB IB IB IB IB IB IB I
DR002 DR003 *Envir @CDE A S M R *Ferti @CDE FE001 FE002 FE003 FE004 FE005 FE006 FE006 FE006 FE009 FE009 FE010	Sub-surface tiles Surface furrows onment Modification Factors DESCRIPTION Add Subtract Multiply Replace lizers, Inoculants and Amendments DESCRIPTION Ammonium nitrate Ammonium sulfate Ammonium-nitrate-sulfate Ahnydrous ammonia Urea Diammnoium phosphate Monoammonium phosphate Calcium nitrate Aqua ammonia Urea ammonia	IB IB IB IB IB IB IB IB IB IB IB IB IB I
DR002 DR003 *Envir @CDE A S M R *Ferti @CDE FE001 FE002 FE003 FE004 FE005 FE006 FE005 FE006 FE007 FE008 FE000 FE010	Sub-surface tiles Surface furrows onment Modification Factors DESCRIPTION Add Subtract Multiply Replace lizers, Inoculants and Amendments DESCRIPTION Ammonium nitrate Ammonium nitrate Ammonium nutrate Ammonium-nitrate-sulfate Anhydrous ammonia Urea Diammonium phosphate Adua ammonium phosphate Calcium nitrate solution Calcium ammonium nitrate solution	IB IB IB IB IB IB IB IB IB IB IB IB IB I
DR002 DR003 *Envir @CDE A S M R *Ferti @CDE FE001 FE002 FE003 FE004 FE005 FE006 FE006 FE006 FE009 FE009 FE010	Sub-surface tiles Surface furrows onment Modification Factors DESCRIPTION Add Subtract Multiply Replace lizers, Inoculants and Amendments DESCRIPTION Ammonium nitrate Ammonium sulfate Ammonium-nitrate-sulfate Ahnydrous ammonia Urea Diammnoium phosphate Monoammonium phosphate Calcium nitrate Aqua ammonia Urea ammonia	IB IB IB IB IB IB IB IB IB IB IB IB IB I
DR002 DR003 *Envir @CDE A S M R *Ferti @CDE FE001 FE002 FE003 FE004 FE005 FE006 FE005 FE006 FE007 FE008 FE000 FE010	Sub-surface tiles Surface furrows onment Modification Factors DESCRIPTION Add Subtract Multiply Replace lizers, Inoculants and Amendments DESCRIPTION Ammonium sulfate Ammonium sulfate Ammonium sulfate Anmonium sulfate Anhydrous ammonia Urea Diammnoium phosphate Monoammonium phosphate Calcium nitrate solution Calcium anitrate solution Calcium ammonium nitrate solution Ammonium polyphosphate	IB IB IB IB IB IB IB IB IB IB IB IB IB I
DR002 DR003 *Envir @CDE A S M R *Ferti @CDE FE001 FE002 FE003 FE004 FE005 FE005 FE006 FE007 FE008 FE009 FE010 FE011 FE012 FE012 FE013	Sub-surface tiles Surface furrows onment Modification Factors DESCRIPTION Add Subtract Multiply Replace lizers, Inoculants and Amendments DESCRIPTION Ammonium nitrate Ammonium sulfate Anmonium-nitrate-sulfate Anhydrous ammonia Urea Diammnoium phosphate Monoammonium phosphate Calcium nitrate Aqua ammonia Urea ammonium nitrate solution Calcium ammonium nitrate solution Calcium ammonium nitrate solution Ammonium polyphosphate Single superphosphate	IB IB IB IB IB IB IB IB IB IB IB IB IB I
DR002 DR003 *Envir @CDE A S M R *Ferti @CDE FE001 FE002 FE003 FE004 FE005 FE006 FE007 FE008 FE007 FE010 FE010 FE011 FE012 FE013 FE014	Sub-surface tiles Surface furrows onment Modification Factors DESCRIPTION Add Subtract Multiply Replace lizers, Inoculants and Amendments DESCRIPTION Ammonium nitrate Ammonium sulfate Anmonium-nitrate-sulfate Anhydrous ammonia Urea Diammnoium phosphate Monoammonium phosphate Calcium nitrate Aqua ammonia Urea ammonium nitrate solution Calcium ammonium nitrate solution Ammonium polyphosphate Single superphosphate	IB IB IB IB IB IB IB IB IB IB IB IB IB I
DR002 DR003 *Envir @CDE A S M R *Ferti @CDE FE001 FE002 FE003 FE004 FE005 FE006 FE006 FE007 FE006 FE007 FE008 FE010 FE010 FE011 FE012 FE013 FE014 FE015	Sub-surface tiles Surface furrows onment Modification Factors DESCRIPTION Add Subtract Multiply Replace lizers, Inoculants and Amendments DESCRIPTION Ammonium nitrate Ammonium nitrate Ammonium nitrate-sulfate Annonium-nitrate-sulfate Anhydrous ammonia Urea Diammoium phosphate Calcium nitrate Aqua ammonia Urea ammonium nitrate solution Calcium ammonium nitrate solution Calcium ammonium nitrate solution Ammonium plyphosphate Single superphosphate Liquid phosphoric acid	IB IB IB IB IB IB IB IB IB IB IB IB IB I
DR002 DR003 *Envir @CDE A S M R *Ferti @CDE FE001 FE002 FE003 FE004 FE005 FE006 FE007 FE008 FE007 FE010 FE010 FE011 FE012 FE013 FE014	Sub-surface tiles Surface furrows onment Modification Factors DESCRIPTION Add Subtract Multiply Replace lizers, Inoculants and Amendments DESCRIPTION Ammonium nitrate Ammonium sulfate Anmonium-nitrate-sulfate Anhydrous ammonia Urea Diammnoium phosphate Monoammonium phosphate Calcium nitrate Aqua ammonia Urea ammonium nitrate solution Calcium ammonium nitrate solution Ammonium polyphosphate Single superphosphate	IB IB IB IB IB IB IB IB IB IB IB IB IB I
DR002 DR003 *Envir @CDE A S M R *Ferti @CDE FE001 FE002 FE003 FE004 FE005 FE006 FE007 FE008 FE009 FE010 FE011 FE012 FE013 FE014 FE015 FE016	Sub-surface tiles Surface furrows onment Modification Factors DESCRIPTION Add Subtract Multiply Replace lizers, Inoculants and Amendments DESCRIPTION Ammonium nitrate Ammonium sulfate Anmonium sulfate Anmonium sulfate Anhydrous ammonia Urea Diammnoium phosphate Calcium nitrate Aqua ammonia Urea ammonium nitrate solution Calcium ammonium nitrate solution Calcium ammonium nitrate solution Ammonium polyphosphate Single superphosphate Triple superphosphate Liquid phosphoric acid Potassium chloride	IB IB IB IB IB IB IB IB IB IB IB IB IB I
DR002 DR003 *Envir @CDE A S M R *Ferti @CDE FE001 FE002 FE003 FE004 FE005 FE006 FE007 FE010 FE010 FE010 FE011 FE012 FE013 FE014 FE015 FE016 FE017	Sub-surface tiles Surface furrows onment Modification Factors DESCRIPTION Add Subtract Multiply Replace lizers, Inoculants and Amendments DESCRIPTION Ammonium nitrate Ammonium sulfate Ammonium-nitrate-sulfate Anhydrous ammonia Urea Diammnoium phosphate Calcium nitrate Aqua ammonia Urea ammonium nitrate solution Calcium nitrate solution Calcium nitrate solution Calcium ammonium nitrate solution Ammonium polyphosphate Single superphosphate Triple superphosphate Liquid phosphoric acid Potassium chloride Potassium nitrate	IB IB IB IB IB IB IB IB IB IB IB IB IB I
DR002 DR003 *Envir @CDE A S M R *Ferti @CDE FE001 FE002 FE003 FE004 FE005 FE006 FE007 FE008 FE009 FE010 FE011 FE012 FE013 FE014 FE015 FE016	Sub-surface tiles Surface furrows onment Modification Factors DESCRIPTION Add Subtract Multiply Replace lizers, Inoculants and Amendments DESCRIPTION Ammonium nitrate Ammonium sulfate Ammonium-nitrate-sulfate Anhydrous ammonia Urea Diammoium phosphate Monoammonium phosphate Calcium nitrate Aqua ammonia Urea ammonium nitrate solution Calcium ammonium nitrate solution Ammonium polyphosphate Single superphosphate Liquid phosphoric acid Potassium chloride Potassium sulfate	IB IB IB IB IB IB IB IB IB IB IB IB IB I
DR002 DR003 *Envir @CDE A S M R *Ferti @CDE FE001 FE002 FE003 FE004 FE005 FE006 FE007 FE010 FE010 FE010 FE011 FE012 FE013 FE014 FE015 FE016 FE017	Sub-surface tiles Surface furrows onment Modification Factors DESCRIPTION Add Subtract Multiply Replace lizers, Inoculants and Amendments DESCRIPTION Ammonium nitrate Ammonium sulfate Ammonium-nitrate-sulfate Anhydrous ammonia Urea Diammnoium phosphate Calcium nitrate Aqua ammonia Urea ammonium nitrate solution Calcium nitrate solution Calcium nitrate solution Calcium ammonium nitrate solution Ammonium polyphosphate Single superphosphate Triple superphosphate Liquid phosphoric acid Potassium chloride Potassium nitrate	IB IB IB IB IB IB IB IB IB IB IB IB IB I
DR002 DR003 *Envir @CDE A S M R *Ferti @CDE FE001 FE002 FE003 FE004 FE005 FE006 FE010 FE010 FE010 FE011 FE012 FE013 FE014 FE015 FE016 FE017 FE018 FE019	Sub-surface tiles Surface furrows onment Modification Factors DESCRIPTION Add Subtract Multiply Replace lizers, Inoculants and Amendments DESCRIPTION Ammonium nitrate Ammonium sulfate Ammonium-nitrate-sulfate Anmonium-nitrate-sulfate Anhydrous ammonia Urea Diammnoium phosphate Monoammonium phosphate Monoammonium phosphate Calcium antrate solution Calcium ammonium nitrate solution Calcium ammonium nitrate solution Calcium ammonium nitrate solution Calcium antrate Single superphosphate Single superpho	IB IB IB IB IB IB IB IB IB IB IB IB IB I
DR002 DR003 *Envir @CDE A S M R *Ferti @CDE FE001 FE002 FE003 FE004 FE005 FE006 FE007 FE008 FE000 FE010 FE011 FE012 FE013 FE014 FE015 FE016 FE017 FE018 FE019 FE020	Sub-surface tiles Surface furrows onment Modification Factors DESCRIPTION Add Subtract Multiply Replace lizers, Inoculants and Amendments DESCRIPTION Ammonium nitrate Ammonium sulfate Anmonium sulfate Anmonium-nitrate-sulfate Anhydrous ammonia Urea Diammonium phosphate Monoammonium phosphate Calcium nitrate Aqua ammonia Urea ammonium nitrate solution Calcium amirate solution Calcium amonium nitrate solution Calcium amonium nitrate solution Ammonium polyphosphate Triple superphosphate Triple superphosphate Liquid phosphoric acid Potassium nitrate Potassium sulfate Urea super granules Dolomitic limestone	IB IB IB IB IB IB IB IB IB IB IB IB IB I
DR002 DR003 *Envir @CDE A S M R *Ferti @CDE FE001 FE002 FE003 FE004 FE005 FE004 FE005 FE006 FE010 FE011 FE012 FE013 FE014 FE016 FE016 FE017 FE018 FE020 FE010 FE0	Sub-surface tiles Surface furrows onment Modification Factors DESCRIPTION Add Subtract Multiply Replace lizers, Inoculants and Amendments DESCRIPTION Ammonium nitrate Ammonium nitrate Ammonium nitrate-sulfate Anhydrous ammonia Urea Diammnoium phosphate Monoammonium phosphate Calcium nitrate solution Calcium nitrate solution Calcium antirate solution Ammonium ployphosphate Single superphosphate Single superphosphate Liquid phosphoric acid Potassium chloride Potassium nitrate Potassium sulfate Urea super granules Dolomiti limestone Rock phosphate	IB IB IB IB IB IB IB IB IB IB IB IB IB I
DR002 DR003 *Envir @CDE A S M R *Ferti @CDE FE001 FE002 FE003 FE004 FE005 FE006 FE007 FE008 FE009 FE010 FE011 FE012 FE013 FE014 FE015 FE016 FE017 FE018 FE019 FE020	Sub-surface tiles Surface furrows onment Modification Factors DESCRIPTION Add Subtract Multiply Replace lizers, Inoculants and Amendments DESCRIPTION Ammonium nitrate Ammonium sulfate Anmonium sulfate Anmonium-nitrate-sulfate Anhydrous ammonia Urea Diammonium phosphate Monoammonium phosphate Calcium nitrate Aqua ammonia Urea ammonium nitrate solution Calcium amirate solution Calcium amonium nitrate solution Calcium amonium nitrate solution Ammonium polyphosphate Triple superphosphate Triple superphosphate Liquid phosphoric acid Potassium nitrate Potassium sulfate Urea super granules Dolomitic limestone	IB IB IB IB IB IB IB IB IB IB IB IB IB I

FE024 FE026	Rhizobium Calcium hydroxide	IB IB
*Harve @CDE	st components DESCRIPTION	SO
C C	Canopy	IB
L	Leaves	IB
н	Harvest product	IB
*Harve	st size categories	
@CDE	DESCRIPTION	SO
A	All	IB
S	Small - less than 1/3 full size	IB
M	Medium - from 1/3 to 2/3 full size	IB
L	Large - greater than 2/3 full size	IB
	ds - Fertilizer and Chemical Applications	
@CDE	DESCRIPTION Applied when required - no shortage	SO
	Broadcast, not incorporated	IB
	Broadcast, incorporated	IB
	Banded on surface	IB
AP004	Banded beneath surface	IB
AP005	Applied in irrigation water	IB
	Foliar spray	IB
	Bottom of hole	IB
	On the seed	IB
AP009	Injected Brodcast on flooded/saturated soil, none in soil	IB
	Brodcast on flooded/saturated soil, 15% in soil	IB
	Brodcast on flooded/saturated soil, 30% in soil	IB
	Brodcast on flooded/saturated soil, 45% in soil	IB
AP015	Brodcast on flooded/saturated soil, 60% in soil	IB
AP016	Brodcast on flooded/saturated soil, 75% in soil	IB
AP017	Brodcast on flooded/saturated soil, 90% in soil	IB
AP018		IB
	Deeply placed urea super granules/pellets, 95% in soil	IB
AP020	Deeply placed urea super granules/pellets, 100% in soil	IB
	ds - Irrigation and Water Management (Units for associated data)	80
@CDE	DESCRIPTION Furrow, mm	SO
	Alternating furrows, mm	IB
	Flood, mm	IB
	Sprinkler, mm	IB
IR005	Drip or trickle, mm	IB
	Flood depth, mm	IB
IR007		IB
IR008	Percolation rate, mm day-1	IB
IR009	Bund height, mm	IB
	ds - Soil Analysis	
@CDE	DESCRIPTION	SO
	Olsen	IB
	Bray No. 1 Bray No. 2	IB
	Mehlich	IB
	Anion exchange resin	IB
	Truog	IB
SA007	Double acid	IB
SA008		IB
SA009		IB
SA010	IFDC Pi strip	IB
	ing Material/Method	
@CDE PM001	DESCRIPTION Dry seed	SO
	Dry seed Transplants	IB
	Vegetative cuttings	IB
	Pregerminated seed	IB

	Distribution	~~
@CDE R	DESCRIPTION Rows	SO IB
H	Hills	IB
U	Uniform	IB
	lues and Organic Fertilizer	
@CDE	DESCRIPTION	SO
	Crop residue	IB
	Green Manure Barnyard Manure	IB IB
	Liquid Manure	IB
*Rotat	tion	
@CDE	DESCRIPTION	SO
	Continuous arable crops	IB
ROUUZ	Rotation with forages	IB
*Soil	Texture	
@CDE	DESCRIPTION	SO
CLOSA	Coarse loamy sand	IB
CSA	Coarse sand	IB
CSI	Coarse silt	IB
	Coarse sandy loam	IB
CL CLLO	Clay Clay	IB IB
FLO	Clay loam Fine loam	IB
	Fine loamy sand	IB
FSA	Fine sand	IB
FSALO	Fine sandy loam	IB
	Silty clay loam	IB
LO	Loam	IB
LOSA SA	Loamy sand Sand	IB
SACL	Sandy clay	IB IB
	Sandy clay loam	IB
SI	Silt	IB
SICL	Silty clay	IB
SILO	Silty loam	IB
SALO	Sandy loam	IB
	Very fine loamy sand	IB
VFSA	Very fine sand Very fine sandy loam	IB IB
VESAL	Very Time Sandy Toam	тв
*Tilla	age Implements	
@CDE	DESCRIPTION	SO
	Tandem disk	IB
	Offset disk	IB
	Oneway disk Moldboard plow	IB IB
	Chisel plow	IB
	Disk plow	IB
TI008	Subsoller	IB
TI009	Beeder/lister	IB
	Field cultivator	IB
	Row crop cultivator	IB
	Harrow-springtooth	IB
	Harrow-spike Rotary hoe	IB IB
	Roto-tiller	IB
	Row crop planter	IB
	Drill	IB
TI018		IB
TI019		IB
	Planting stick	IB
TI021 TI022	Animal-drawn implement Hand	IB IB
	Manual hoeing	IB
020		

APPENDIX C. SIMULATED AND FIELD DATA CODES

Codes currently used for both simulated and field data are listed in sections relating to specific model output files. Codes currently only used for field data are listed in a section headed Expdata. Codes are assigned as far as possible in accord with the following convention:

lst letter: Plant component (eg. C for canopy; H for harvest product)
2nd letter: Measurement aspect (eg. W for dry weight; N for nitrogen weight)

3rd letter: Basis of measurement (eg. A for unit area; P for plant)

4th letter: Time or stage of measurement (eg. D for specific day)

For complex aspects (eg. ear plus grain) this convention has been modified by dropping the usual 4th letter and using the first 2 letter for component(s). Codes for dates have letters for the stage first and then a D or DAT.

The fields in the file are as follows:

CDE The 'universal' code used to facilitate data interchange.

LABEL A short description used when labelling graphs.

DESCRIPTION A 35 character description of the aspect.

OTHER CODE(S) Additional codes that may be used locally (eg. YILD for HWAM)

SO The source of the codes (IB=IBSNAT). Codes added by a user should be referenced in this field and the name and address of the person adding the code should be entered as a comment (ie.with a '!' in column 1) below this note. This is important to ensure that information from different workers can be easily integrated.

[SE The section to which the code belongs. Used for sorting.]

*SUMN	IARY					
@CDE	LABEL	DESCRIPTION	OTHER	CODE(S)	SO	SE
ADAT	ANTHESIS day	Anthesis date (YrDoy)	ANTH		IB	SU
BWAH	BYPRODUCT kg/ha	By-product harvest (kg dm/ha)			IB	SU
CNAA	TOPS N, ANTHESIS	Tops N at anthesis (kg/ha)			IB	SU
CNAM	TOPS N kg/ha	Tops N at maturity (kg/ha)			IB	SU
CPAM	TOPS P kg/ha	Tops P at maturity (kg/ha)			IB	SU
CWAA	TOPS WT, ANTHSIS	Tops weight at anthesis (kg dm/ha)			IB	SU
CWAM	TOPS WT kg/ha	Tops weight at maturity (kg dm/ha)			IB	SU
DRCM	DRAINAGE mm	Season water drainage (mm)			IB	SU
DWAP	SOWING WT kg/ha	Planting material weight (kg dm/ha)			IB	SU
ETCM	ET TOTAL mm	Season evapotranspiration (mm)			IB	SU
FNAM	FIELD NAME	Field name			IB	SU
GN%M	GRAIN N%,MATURE	Grain N at maturity (%)			IB	SU
GNAM	GRAIN N kg/ha	Grain N at maturity (kg/ha)			IB	SU
H#AM	NUMBER #/m2	Number at maturity (no/m2)			IB	SU
H#UM	NUMBER #/unit	Number at maturity (no/unit)			IB	SU
HDAT	HARVEST day	Harvest date (YRDOY)			IB	SU
HIAM	HARVEST INDEX	Harvest index at maturity			IB	SU
HWAH	HAR YIELD kg/ha	Yield at harvest (kg dm/ha)			IB	SU
HWAM	MAT YIELD kg/ha	Yield at maturity (kg dm/ha)			IB	SU
HWUM	WEIGHT mg/unit	Unit wt at maturity (mg dm/unit)			IB	SU
IR#M	IRRIG APPS #	Irrigation applications (no)			IB	SU
IRCM	IRRIG mm	Season irrigation (mm)			IB	SU
L#SM	LEAF NUMBER #	Leaf number per stem, maturity			IB	SU
L#SX	LEAF NUMBER #	Leaf number per stem,maximum			IB	SU
LAIX	LAI MAXIMUM	Leaf area index, maximum			IB	SU
	MATURITY day	Physiological maturity date (YrDoy)			IB	
	N FIXED kg/h	N fixed during season (kg/ha)			IB	SU
NI#M	N APPLICATION #	N applications (no)			IB	
	SOIL N kg/ha	Inorganic N at maturity (kg N/ha)			IB	SU
		Inorganic N applied (kg N/ha)			IB	SU
		N leached during season (kg N/ha)			IB	
		N uptake during season (kg N/ha)			IB	
		Organic soil C at maturity (t/ha)			IB	
		Organic soil N at maturity (kg/ha)			IB	
	POD 1 DATE yd	Pod 1 date (YrDoy)			IB	
	PLANTING DATE	Planting date (YrDoy)			IB	
	FULL POD DATE	Full pod date (YrDoy)			IB	
		Number of P applications (no)			IB	
		P applied (kg/ha)			IB	
PRCM	PRECIP mm	Season precipitation (mm)			IB	SU

PWAM POD WT kg/ha	Pod weight at maturity (kg dm/ha)		IB SU
RECM RESIDUE kg/ha	Residue applied (kg/ha)		IB SU
ROCM RUNOFF mm	Season surface runoff (mm)		IB SU
RIAT FIRST BLOOM	Beginning Bloom Stage		IB SU
R2AT FIRST PEG	Beginning Peg Stage		IB SU
R3AT FIRST POD	Beginning Pod Stage		IB SU
R4AT FULL POD	Full Pod Stage		IB SU
	-		
R5AT FIRST SEED	Beginning Seed Stage		IB SU
R6AT FULL SEED	Full Seed Stage		IB SU
	Beginning Maturity Stage		IB SU
R8AT HARV MATURITY	Harvest Maturity Stage		IB SU
R9AT OVER-MATURE	Over-Mature Pod Stage		IB SU
	Simulation start date (YrDoy)		IB SU
SNAM STEM N, MATURITY	Stem N at maturity (kg/ha)		IB SU
SPAM SOIL P kg/ha	Soil P at maturity (kg/ha)		IB SU
SWXM EXTR WATER cm	Extractable water at maturity (cm)		IB SU
THAM THRESHING %	Threshing % at maturity		IB SU
TNAM TREATMENT NAME	Treatment title		IB SU
*GROWTH			
@CDE LABEL	DESCRIPTION	LOCAL CODE	SO SE
CDAY CROP AGE days	Crop age (days from planting)		IB GR
CHTD CANOPY HEIGHT m			IB GR
CWAD TOPS WT kg/ha	Tops weight (kg dm/ha)		IB GR
	Canopy width (m; for 1 row)		IB GR
E#AD EAR NO./m2	Ear number (no/m2)		IB GR
EWAD EAR WT. kg/ha	Ear (no grain) weight (kg dm/ha)		IB GR
G#AD GRAIN NO #/m2	Grain number (no/m2)		IB GR
GSTD GROWTH STAGE	Growth stage		IB GR
	Grain weight (kg dm/ha)		IB GR
GWGD GRAIN WT mg	Unit grain weight (mg dm/grain)		IB GR
HIAD HARVEST INDEX	Harvest index (grain/top)		IB GR
HIPD POD INDEX	Pod harvest index (pod/top)		IB GR
L#SD LEAF NUMBER	Leaf number per stem		IB GR
LAID LAI	Leaf area index		IB GR
LAWD SLA cm2/g	Specific leaf area (cm2/g)		IB GR
LN%D LEAF N %	Leaf nitrogen concentration (%)		IB GR
LWAD LEAF WT kg/ha	Leaf weight (kg dm/ha)		IB GR
	Nitrogen stress factor (0-1)		IB GR
	Nodule weight (kg dm/ha)		IB GR
P#AD POD NO #/m2	Pod number (no/m2)		IB GR
	Partitioning of wt to shoot (ratio)		IB GR
PWAD POD WT kg/ha	Pod weight (kg dm/ha)		IB GR
-	Detached pod weight (kg dm/ha)		IB GR
PWTD POD WT kg/ha	Total pod weight (kg dm/ha)		IB GR
RDPD ROOT DEPTH m	Root depth (m)		IB GR
RL10 RLD 180-210cm	Root density, 180-210cm (cm/cm3) Root density, 0-5 cm (cm/cm3)		IB GR IB GR
RL1D RLD 0-5 cm			
RL2D RLD 5-15 cm	Root density, 5-15 cm (cm/cm3)		IB GR
RL3D RLD 15-30 cm	Root density, 15-30 cm (cm/cm3)		IB GR
RL4D RLD 30-45 cm	Root density, 30-45 cm (cm/cm3)		IB GR
RL5D RLD 45-60 cm	Root density, 45-60 cm (cm/cm3)		IB GR
RL6D RLD 60-90 cm	Root density, 60-90 cm (cm/cm3)		IB GR
RL7D RLD 90-120cm	Root density, 90-120cm (cm/cm3)		IB GR
RL8D RLD 120-150cm	Root density,120-150cm (cm/cm3)		IB GR
RL9D RLD 150-180cm	Root density,150-180cm (cm/cm3)		IB GR
RN%D ROOT N %	Root N concentration (%)		IB GR
RWAD ROOT WT kg/ha	Root weight (kg dm/ha)		IB GR
SH%D SHELLING %	Shelling % (seed wt/pod wt*100)		IB GR
SHAD SHELL WT kg/ha	Shell weight (kg dm/ha)		IB GR
SHND SHELL N %	Shell N concentration (%)		IB GR
SLAD SLA cm2/g	Specific leaf area (cm2/g)		IB GR
SN%D STEM N %	Stem (stover) N concentration %)		IB GR
SWAD STEM WT kg/ha	Stem weight (kg dm/ha)		IB GR
T#AD TILLER NO #/m2			0.0
ττοσοιτι τις π/ III2	Tiller number (no/m2)		TB GP
WSGD H20 STRESS CP	Tiller number (no/m2) Water stress - growth (0-1)		IB GR IB GR
WSGD H20 STRESS,GR WSPD H20 STRESS,PHS	Tiller number (no/m2) Water stress - growth (0-1) Water stress - photosynthesis (0-1)		IB GR IB GR IB GR

*NITROGEN			
@CDE LABEL	DESCRIPTION	LOCAL CODE	SO SU
CNAD CROP N kg/ha	Ammonia Vol. (kg N/ha/day) Tops N (kg/ha)		IB NI IB NI
	Floodwater Phot.Act.Index (0 to 1)		IB NI IB NI
FALI FLOOD LT INDX			IB NI
	Floodwater Denitrif Rt (kg N/ha/d)		IB NI
	Floodwater Aqueous NH3 (mg N/l)		IB NI
FL3N FLD NO3 mg N/l	Floodwater NO3-N (mg N/l)		IB NI
-	Floodwater NH4-N Conc. (mg N/l)		IB NI
	Floodwater Ammoniacal N (kg N/ha)		IB NI
	Puddled Soil Surface L BD (g/cc)		IB NI
FLEF Flood Evap mm	Floodwater Evaporation Rate (mm/d) Floodwater Nitrogen Index (0 to 1)		IB NI IB NI
FLPH FLOOD pH	Maximum Daytime Floodwater pH		IB NI IB NI
-	Floodwater Temp. Index (0 to 1)		IB NI
	Floodwater Urea N (kg N/ha)		IB NI
FUHY UREA HYD kgN/ha	Urea Hydrol Floodwater (kg N/ha/d)		IB NI
GN%D GRAIN N %	Grain N concentration (%)		IB NI
GNAD GRAIN N kg/ha			IB NI
	Leaf N concentration (%)		IB NI
LNAD LEAF N kg/ha	Leai N (kg/na) Inorganic N applied (kg/ha)		IB NI IB NI
NFXC N FIXED kg/ha			IB NI IB NI
	N fixation rate (kg/ha.day)		IB NI
	NH4 in 180-210cm (ug N/g soil)		IB NI
NH1D NH4 ug/g 0-5cm	NH4 in 0-5 cm (ug N/g soil)		IB NI
NH2D NH4 ug/g 5-15cm	NH4 in 5-15 cm (ug N/g soil)		IB NI
	NH4 in 15-30 cm (ug N/g soil)		IB NI
	NH4 in 30-45 cm (ug N/g soil)		IB NI
	NH4 in $45-60 \text{ cm} (\text{ug N/g soil})$		IB NI
	NH4 in 60-90 cm (ug N/g soil) NH4 in 90-120cm (ug N/g soil)		IB NI IB NI
	NH4 in 120-150cm (ug N/g soil)		IB NI IB NI
	NH4 in 150-180cm (ug N/g soil)		IB NI
	Total soil NH4 (kg N/ha)		IB NI
NI10 NO3 ug/g180-210	NO3 in 180-210cm (ug N/g soil)		IB NI
NI1D NO3 ug/g 0-5cm			IB NI
NI2D NO3 ug/g 5-15cm			IB NI
	NO3 in 15-30 cm (ug N/g soil) NO3 in 30-45 cm (ug N/g soil)		IB NI IB NI
	NO3 in 45-60 cm (ug N/g soil)		IB NI IB NI
	NO3 in $60-90$ cm (ug N/g soil)		IB NI
NI7D NO3 ug/g 90-120			IB NI
NI8D NO3 ug/g120-150	NO3 in 120-150cm (ug N/g soil)		IB NI
	NO3 in 150-180cm (ug N/g soil)		IB NI
NIAD TOTAL N kg/ha	Total soil NO3+NH4 (kg N/ha)		IB NI
-	Total soil NO3 (kg N/ha)		IB NI IB NI
NLCC N LEACHED kg/ha	Organic N in soil (kg N/ha)		IB NI IB NI
NUPC N UPTAKE kg/ha			IB NI
-	Ox Layer Nitrif Rt (kg N/ha/d)		IB NI
RN%D ROOT N %	Root N concentration (%)		IB NI
SHND SHELL N %	Shell N concentration (%)		IB NI
SN%D STEM N %	Stem (stover) N concentration (%)		IB NI
SNAD STEM N kg/ha	Stem N (kg/ha)		IB NI
VN%D VEG N %	Veg (stem+leaf) N concentration (%)		IB NI
VNAD VEGE N kg/ha	Veg (stem+leaf) N (kg/ha)		IB NI
*WATER			
@CDE LABEL	DESCRIPTION	LOCAL CODE	SO SE
DA3D DAYLENGTH h	Daylength (h;3 deg basis)		IB WA
DAYD DAYLENGTH h	Daylength (h;sunrise to sunset)		IB WA
DRNC DRAINGE mm	Cumulative drainage (mm)		IB WA
EOAA POT EVAP mm/d	Av pot.evapotranspiration (mm/d)		IB WA
EOAD POT EVAP mm/d	Potential evapotranspiration (mm/d)		IB WA
EPAA PLANT EVAP mm/d EPAC TRANSPIRATION	Av plant transpiration (mm/d) Cumulative transpiration (mm)		IB WA IB WA
	Plant transpiration (mm/d)		IB WA IB WA
	Av soil evaporation (mm/d)		IB WA
ESAC SOIL EVAP mm	Cumulative soil evaporation (mm)		IB WA

ESAD	SOIL EVAP mm/d	Soil evaporation (mm/d)		IB WA
ETAA	${\tt EVAPOTRANS } {\tt mm/d}$	Av evapotranspiration (mm/d)		IB WA
ETAC	EVAPOTRANS mm	Cumulative evapotranspiration (mm)		IB WA
		Evapotranspiration (mm/d)		IB WA
	IRRIGATION #	Irrigation applications (no)		IB WA
	IRRIGATION mm	Cumulative irrigation (mm)		IB WA
	PRECIPITATION RUNOFF mm	Cumulative precipitation (mm) Cumulative runoff (mm)		IB WA IB WA
	SRAD MJ/m2.day	Av solar radiation (MJ/m2.day)		IB WA
	SWC 180-210cm	Soil water 180-210cm(cm3/cm3)		IB WA
SW1D		Soil water 0-5 cm(cm3/cm3)		IB WA
SW2D		Soil water 5-15 cm(cm3/cm3)		IB WA
SW3D	SWC 15-30 cm	Soil water 15-30 cm(cm3/cm3)		IB WA
SW4D	SWC 30-45 cm	Soil water 30-45 cm(cm3/cm3)		IB WA
SW5D		Soil water 45-60 cm(cm3/cm3)		IB WA
SW6D		Soil water 60-90 cm(cm3/cm3)		IB WA
SW7D		Soil water 90-120cm(cm3/cm3)		IB WA
	SWC 120-150cm	Soil water 120-150cm(cm3/cm3) Soil water 150-180cm(cm3/cm3)		IB WA
	SWC 150-180cm EXTR WATER cm	Extractable water (cm)		IB WA IB WA
	MINIMUM TEMP C	Av minimum temperature (C)		IB WA
	MAXIMUM TEMP C	Av maximum temperature (C)		IB WA
	S-TMP 80-210cm	Soil temperature 180-210cm (C)		IB WA
TS1D	S-TMP 0-5 cm	Soil temperature 0-5 cm (C)		IB WA
TS2D	S-TMP 5-15 cm	Soil temperature 5-15 cm (C)		IB WA
TS3D	S-TMP 15-30 cm	Soil temperature 15-30 cm (C)		IB WA
	S-TMP 30-45 cm	Soil temperature 30-45 cm (C)		IB WA
	S-TMP 45-60 cm	Soil temperature 45-60 cm (C)		IB WA
	S-TMP 60-90 cm	Soil temperature 60-90 cm (C)		IB WA
	S-TMP 90-120cm	Soil temperature 90-120cm (C) Soil temperature 120-150cm (C)		IB WA IB WA
	S-TMP 50-180cm	Soil temperature 150-180cm (C)		IB WA
1000	5 111 50 10000			10 111
*CARE	BON			
@CDE	LABEL	DESCRIPTION	LOCAL CODE	SO SE
CGRD	CGR g/m2.d	Crop growth rate (g top+store/m2.d)		IB CA
CHAD	CH2O g/m2.d	CH20 accumulation (g CH20/m2.d)		IB CA
	LEAF C %	C in leaf (%)		IB CA
	CH MOB g/m2.d	C mobilization (g CH2O/m2.d)		IB CA
	STEM C %	C in stem (%)		IB CA
	GR RESP g/m2.d	Growth respiration (g CH20/m2.d)		IB CA IB CA
	LIGHT INTER %	Light (PAR) interception (%) Noon light (PAR) interception (%)		IB CA
		Noon Pmax shaded leaves (mg/m2.s)		IB CA
		Noon Pmax sunlit leaves (mg/m2.s)		IB CA
	M RESP g/m2.d	Maintenance resp (g CH20/m2.d)		IB CA
N%HN	NOON N,SHADE %	Noon N shaded leaves (%)		IB CA
N%LN	NOON N,LIGHT %	Noon N sunlit leaves (%)		IB CA
	OM APPL kg/ha	Cumulative OM applied (kg dm/ha)		IB CA
	P GROSS g/m2.d	Gross photosynthesis (g CH20/m2.d)		IB CA
		Gross photosyn., noon (mg CO2/m2.s)		IB CA
	NOON SLW, SHADE NOON SLW, Light	SLW in shaded lves,noon (mg dm/cm2) SLW in sunlit lves,noon (mg dm/cm2)		IB CA IB CA
	SOIL OC t/ha	Soil organic carbon (t/ha)		IB CA
		Daily average canopy temp (C)		IB CA
		Noon canopy temperature (C)		IB CA
		Tops+roots+storage wt (kg dm/ha)		IB CA
*PESI				
	LABEL	DESCRIPTION	LOCAL CODE	SO SE
	ASSIM g CH20	Cumulative assimilate reduction		IB PE
	CEW #/row-m	Corn Earworm		IB PE
	LAI m2/m2 LEAF g/m2	Cumulative leaf area consumed Cumulative leaf mass consumed		IB PE IB PE
	PLTPOP %	Cumulative pl population reduction		IB PE
	ROOT cm/cm2	Cumulative propulation reduction Cumulative root length consumed		IB PE
	ROOT cm/cm2	Cumulative root in density consumed		IB PE
	ROOT g/m2	Cumulative root mass consumed		IB PE
CSD#	SEED #/m2	Cumulative seed number consumed		IB PE
	SEED g/m2	Cumulative seed mass consumed		IB PE
CSH#	SHELL #/m2	Cumulative shell number consumed		IB PE

90

CSHM	SHELL g/m2	Cumulative shell mass consumed		IB PE
	STEM g/m2	Cumulative stem mass consumed		IB PE
	-			
		Daily carbohydrate pool reduction		IB PE
DLA	DIS. LAI cm2/m2	Daily diseased leaf area increase		IB PE
DLA%	DIS. LAI %/d	Daily % diseased leaf area increase		IB PE
DLAT	LAI m2/m2.d	Daily leaf area consumed		IB PE
		Daily leaf mass consumed		
	LEAF g/m2.d	-		IB PE
DP0%	PLTPOP %/day	Daily plant population reduction		IB PE
DRLF	ROOT cm/cm2.d	Daily total root length consumed		IB PE
DRLV	ROOT cm/cm3.d	Daily root length density consumed		IB PE
	ROOT g/m2.d	Daily root mass consumed		IB PE
DSD#	SEED #/m2.d	Daily seed number consumed		IB PE
DSDM	SEED g/m2.d	Daily seed mass consumed		IB PE
DSH#	SHELL #/m2.d	Daily shell number consumed		IB PE
	SHELL g/m2.d	Daily shell mass consumed		IB PE
	-			
	STEM g/m2.d	Daily stem mass consumed		IB PE
FAW	FAW #/m	Fall armyworm		IB PE
RTWM	RTWM #/m	Root worm		IB PE
SGSB	SGSB #/m	Southern green stinkbug		IB PE
SL				IB PE
	SB LOOPER #/m	Soybean looper		
VBC5	VBC5 #/m	5 instar velvetbean caterpillar		IB PE
VBC6	VBC6 #/m	6 instar velvetbean caterpillar		IB PE
* EVDI	ERIMENTAL DATA			
@CDE	LABEL	DESCRIPTION	LOCAL CODE	SO SE
AP1D	APEX 1cm day	Apex 1cm date (YrDoy)		IB EX
	CHAFF N %	Chaff N (%)		IB EX
		Chaff weight (kg dm/ha)		IB EX
DRID	DOUBLE RIDGES d	Double ridges date (YrDoy)		IB EX
DWAD	DEAD WT kg/ha	Dead material weight (kg dm/ha)		IB EX
	EMERGENCE day	Emergence date (YrDoy)		IB EX
		Ear emergence date (YrDoy)		
				IB EX
EGWA	EAR+GRAIN kg/ha	Ear plus grain weight (kg dm/ha)		IB EX
EGWS	EAR+GRAIN g/s	Ear+grain weight (g dm/shoot)		IB EX
G#PD	GRAIN NO #/pl	Grain number (no/plant)		IB EX
	-	Grain number (no/shoot)		IB EX
GW%M	GRAIN H20 %	Grain moisture at maturity (%)		IB EX
GWAM	GRAIN WT kg/ha	Grain wt at maturity (kg dm/ha)		IB EX
GWGM	GRAIN WT mg	Unit wt at maturity (mg dm/grain)		IB EX
	GRAIN WT g/pl	Grain wt at maturity (g dm/plant)		IB EX
		Grain yield at maturity (kg fm/ha)		IB EX
GYPM	GRAIN YLD g/pl	Grain yld at maturity (g fm/plant)		IB EX
GYVM	TEST WT kg/hl	Test weight at maturity (kg fm/hl)		IB EX
HWAC	COR YIELD kg/ha	Corrected yield (kg dm/ha)		IB EX
		Harvest yld at maturity (kg fm/ha)		IB EX
	HARVEST kg/ha			
	FLAG AREA cm2	Flag leaf area (cm2/leaf)		IB EX
LALD	LEAF AREA cm2	Leaf area (cm2/leaf)		IB EX
LAPD	LEAF AREA cm2/p	Leaf area (cm2/plant)		IB EX
		Leaf appearance rate (#/day)		IB EX
		Leaf number increase rate (#/day)		IB EX
				TD PV
		Dead leaf weight (kg dm/ha)		TD DI
				IB EX
LF3D		Full expansion, leaf 3 (Yrdoy)		IB EX IB EX
	LEAF 3 FULL day	Full expansion, leaf 3 (Yrdoy)		
LF5D	LEAF 3 FULL day LEAF 5 FULL day	Full expansion, leaf 3 (Yrdoy) Full expansion, leaf 5 (Yrdoy)		IB EX IB EX
LF5D LLFD	LEAF 3 FULL day LEAF 5 FULL day LAST LEAF day	Full expansion, leaf 3 (Yrdoy) Full expansion, leaf 5 (Yrdoy) Last leaf date (YrDoy)		IB EX IB EX IB EX
LF5D LLFD LWAM	LEAF 3 FULL day LEAF 5 FULL day LAST LEAF day LEAF WT kg/ha	Full expansion, leaf 3 (Yrdoy) Full expansion, leaf 5 (Yrdoy) Last leaf date (YrDoy) Leaf weight (kg/ha)		IB EX IB EX IB EX IB EX
LF5D LLFD LWAM	LEAF 3 FULL day LEAF 5 FULL day LAST LEAF day LEAF WT kg/ha	Full expansion, leaf 3 (Yrdoy) Full expansion, leaf 5 (Yrdoy) Last leaf date (YrDoy)		IB EX IB EX IB EX
LF5D LLFD LWAM LWPD	LEAF 3 FULL day LEAF 5 FULL day LAST LEAF day LEAF WT kg/ha LEAF WT g/plant	Full expansion, leaf 3 (Yrdoy) Full expansion, leaf 5 (Yrdoy) Last leaf date (YrDoy) Leaf weight (kg/ha)		IB EX IB EX IB EX IB EX
LF5D LLFD LWAM LWPD PARI	LEAF 3 FULL day LEAF 5 FULL day LAST LEAF day LEAF WT kg/ha LEAF WT g/plant PAR INTERCEPT %	<pre>Full expansion, leaf 3 (Yrdoy) Full expansion, leaf 5 (Yrdoy) Last leaf date (YrDoy) Leaf weight (kg/ha) Leaf weight (g/plant) PAR interception (%)</pre>		IB EX IB EX IB EX IB EX IB EX IB EX
LF5D LLFD LWAM LWPD PARI RLAD	LEAF 3 FULL day LEAF 5 FULL day LEAF WT kg/ha LEAF WT g/plant PAR INTERCEPT % ROOT LN cm/cm2	<pre>Full expansion, leaf 3 (Yrdoy) Full expansion, leaf 5 (Yrdoy) Last leaf date (YrDoy) Leaf weight (kg/ha) Leaf weight (g/plant) PAR interception (%) Root length (cm/cm2)</pre>		IB EX IB EX IB EX IB EX IB EX IB EX IB EX
LF5D LLFD LWAM LWPD PARI RLAD RLAD	LEAF 3 FULL day LEAF 5 FULL day LEAF WT kg/ha LEAF WT kg/ha LEAF WT g/plant PAR INTERCEPT % ROOT LN cm/cm2 ROOT L/W cm/g	<pre>Full expansion, leaf 3 (Yrdoy) Full expansion, leaf 5 (Yrdoy) Last leaf date (YrDoy) Leaf weight (kg/ha) Leaf weight (g/plant) PAR interception (%) Root length (cm/cm2) Root length/weight (cm/g)</pre>		IB EX IB EX IB EX IB EX IB EX IB EX IB EX IB EX
LF5D LLFD LWAM LWPD PARI RLAD RLWD RWLD	LEAF 3 FULL day LEAF 5 FULL day LEAF WT kg/ha LEAF WT g/plant PAR INTERCEPT % ROOT LN cm/cm2 ROOT L/W cm/g ROOT W/L g/cm	<pre>Full expansion, leaf 3 (Yrdoy) Full expansion, leaf 5 (Yrdoy) Last leaf date (YrDoy) Leaf weight (kg/ha) Leaf weight (g/plant) PAR interception (%) Root length (cm/cm2) Root length/weight (cm/g) Root weight/length (g/cm)</pre>		IB EX IB EX IB EX IB EX IB EX IB EX IB EX IB EX IB EX
LF5D LLFD LWAM LWPD PARI RLAD RLWD RWLD	LEAF 3 FULL day LEAF 5 FULL day LEAF WT kg/ha LEAF WT kg/ha LEAF WT g/plant PAR INTERCEPT % ROOT LN cm/cm2 ROOT L/W cm/g	<pre>Full expansion, leaf 3 (Yrdoy) Full expansion, leaf 5 (Yrdoy) Last leaf date (YrDoy) Leaf weight (kg/ha) Leaf weight (g/plant) PAR interception (%) Root length (cm/cm2) Root length/weight (cm/g)</pre>		IB EX IB EX IB EX IB EX IB EX IB EX IB EX IB EX
LF5D LLFD LWAM LWPD PARI RLAD RUWD RWLD S#PD	LEAF 3 FULL day LEAF 5 FULL day LEAF WT kg/ha LEAF WT g/plant PAR INTERCEPT % ROOT LN cm/cm2 ROOT L/W cm/g ROOT W/L g/cm	<pre>Full expansion, leaf 3 (Yrdoy) Full expansion, leaf 5 (Yrdoy) Last leaf date (YrDoy) Leaf weight (kg/ha) Leaf weight (g/plant) PAR interception (%) Root length (cm/cm2) Root length/weight (cm/g) Root weight/length (g/cm)</pre>		IB EX IB EX IB EX IB EX IB EX IB EX IB EX IB EX IB EX
LF5D LLFD LWAM LWPD PARI RLAD RLWD RWLD S#PD S#AD	LEAF 3 FULL day LEAF 5 FULL day LEAF WT kg/ha LEAF WT g/plant PAR INTERCEPT % ROOT LN cm/cm2 ROOT L/W cm/g ROOT W/L g/cm SHOOT NO #/pl SHOOT NO #/pl	<pre>Full expansion, leaf 3 (Yrdoy) Full expansion, leaf 5 (Yrdoy) Last leaf date (YrDoy) Leaf weight (kg/ha) Leaf weight (g/plant) PAR interception (%) Root length (cm/cm2) Root length/weight (cm/g) Root weight/length (g/cm) Shoot (apex) number (no/plant) Shoot (apex) number (no/m2)</pre>		IB EX IB EX
LF5D LLFD LWAM LWPD PARI RLAD RWLD S#PD S#AD SCWA	LEAF 3 FULL day LEAF 5 FULL day LEAF 5 FULL day LEAF WT kg/ha LEAF WT g/plant PAR INTERCEPT % ROOT LN cm/cm2 ROOT L/W cm/g ROOT W/L g/cm SHOOT NO #/pl SHOOT NO #/pl SHOOT NO #/m2	<pre>Full expansion, leaf 3 (Yrdoy) Full expansion, leaf 5 (Yrdoy) Last leaf date (YrDoy) Leaf weight (kg/ha) Leaf weight (g/plant) PAR interception (%) Root length (cm/cm2) Root length/weight (cm/g) Root weight/length (g/cm) Shoot (apex) number (no/plant) Shoet (apex) number (no/m2) Stem plus chaff (kg/ha)</pre>		IB EX IB EX
LF5D LLFD LWAM PARI RLAD RUAD S#PD S#AD SCWA SP#P	LEAF 3 FULL day LEAF 5 FULL day LEAF WT kg/ha LEAF WT g/plant PAR INTERCEPT % ROOT LN cm/cm2 ROOT L/W cm/g ROOT W/L g/cm SHOOT NO #/pl SHOOT NO #/pl SHOOT NO #/m2 STM+CHAFF kg/ha	<pre>Full expansion, leaf 3 (Yrdoy) Full expansion, leaf 5 (Yrdoy) Last leaf date (YrDoy) Leaf weight (kg/ha) Leaf weight (g/plant) PAR interception (%) Root length (cm/cm2) Root length/weight (cm/g) Root weight/length (g/cm) Shoot (apex) number (no/plant) Shom (apex) number (no/m2) Stem plus chaff (kg/ha) Spikelet number (no/plant)</pre>		IB EX IB EX
LF5D LLFD LWAM PARI RLAD RLWD RWLD S#PD S#AD SCWA SP#P SWPD	LEAF 3 FULL day LEAF 5 FULL day LEAF WT kg/ha LEAF WT g/plant PAR INTERCEPT % ROOT LN cm/cm2 ROOT L/W cm/g ROOT W/L g/cm SHOOT NO #/pl SHOOT NO #/pl SHOOT NO #/m2 STM+CHAFF kg/ha SPIKELETS #/pl STEM WT g/plant	<pre>Full expansion, leaf 3 (Yrdoy) Full expansion, leaf 5 (Yrdoy) Last leaf date (YrDoy) Leaf weight (kg/ha) Leaf weight (g/plant) PAR interception (%) Root length (cm/cm2) Root length/weight (cm/g) Root (apex) number (no/plant) Shoot (apex) number (no/plant) Stem plus chaff (kg/ha) Spikelet number (no/plant) Stem weight (g dm/plant)</pre>		IB EX
LF5D LLFD LWAM PARI RLAD RLWD RWLD S#PD S#AD SCWA SP#P SWPD	LEAF 3 FULL day LEAF 5 FULL day LEAF WT kg/ha LEAF WT g/plant PAR INTERCEPT % ROOT LN cm/cm2 ROOT L/W cm/g ROOT W/L g/cm SHOOT NO #/pl SHOOT NO #/pl SHOOT NO #/m2 STM+CHAFF kg/ha	<pre>Full expansion, leaf 3 (Yrdoy) Full expansion, leaf 5 (Yrdoy) Last leaf date (YrDoy) Leaf weight (kg/ha) Leaf weight (g/plant) PAR interception (%) Root length (cm/cm2) Root length/weight (cm/g) Root weight/length (g/cm) Shoot (apex) number (no/plant) Shom (apex) number (no/m2) Stem plus chaff (kg/ha) Spikelet number (no/plant)</pre>		IB EX IB EX
LF5D LLFD LWAM PARI RLAD RLWD RWLD S#PD S#AD SCWA SP#P SWPD T#PD	LEAF 3 FULL day LEAF 5 FULL day LAST LEAF day LEAF WT g/plant PAR INTERCEPT % ROOT L/W cm/gm SHOOT NO #/pl SHOOT NO #/pl SHOOT NO #/m2 STM+CHAFF kg/ha SPIKELETS #/pl STEM WT g/plant TILLER NO.#/pl	<pre>Full expansion, leaf 3 (Yrdoy) Full expansion, leaf 5 (Yrdoy) Last leaf date (YrDoy) Leaf weight (kg/ha) Leaf weight (g/plant) PAR interception (%) Root length (cm/cm2) Root length/weight (cm/g) Root (apex) number (no/plant) Shoot (apex) number (no/m2) Stem plus chaff (kg/ha) Spikelet number (no/plant) Stem weight (g dm/plant) Tiller number (no/plant)</pre>		IB EX
LF5D LLFD LWAM PARI RLAD RULD S#PD S#AD SCWA SP#P SWPD T#PD T#AD	LEAF 3 FULL day LEAF 5 FULL day LEAF 5 FULL day LEAF WT kg/ha LEAF WT g/plant PAR INTERCEPT % ROOT L/W cm/g ROOT W/L g/cm SHOOT NO #/pl SHOOT NO #/pl SHOOT NO #/m2 STM+CHAFF kg/ha STEM WT g/plant TILLER NO.#/pl TILLER NO.#/m2	<pre>Full expansion, leaf 3 (Yrdoy) Full expansion, leaf 5 (Yrdoy) Last leaf date (YrDoy) Leaf weight (kg/ha) Leaf weight (g/plant) PAR interception (%) Root length (cm/cm2) Root length/weight (cm/g) Root weight/length (g/cm) Shoot (apex) number (no/plant) Shoot (apex) number (no/m2) Stem plus chaff (kg/ha) Spikelet number (no/plant) Stem weight (g dm/plant) Tiller number (no/m2)</pre>		IB EX
LF5D LLFD LWAM LWPD PARI RLAD RUAD S#AD S#AD SP#P SWPD T#PD T#AD TNAM	LEAF 3 FULL day LEAF 5 FULL day LEAF 5 FULL day LEAF WT kg/ha LEAF WT g/plant PAR INTERCEPT % ROOT LN cm/cm2 ROOT L/W cm/g ROOT W/L g/cm SHOOT NO #/pl SHOOT NO #/pl SHOOT NO #/pl STM+CHAFF kg/ha SFIKELETS #/pl STEM WT g/plant TILLER NO.#/pl TILLER NO.#/pl	<pre>Full expansion, leaf 3 (Yrdoy) Full expansion, leaf 5 (Yrdoy) Last leaf date (YrDoy) Leaf weight (kg/ha) Leaf weight (g/plant) PAR interception (%) Root length (cm/cm2) Root length/weight (cm/g) Root weight/length (g/cm) Shoot (apex) number (no/plant) Shoot (apex) number (no/m2) Stem weight (g dm/plant) Tiller number (no/plant) Tiller number (no/plant) Tiller number (no/m2) Total N at maturity (kg N/ha)</pre>		IB EX IB EX
LF5D LLFD LWAM PARI RLAD RLWD S#PD S#AD SCWA SP#P SWPD T#PD T#PD T#AD TNAM TSPD	LEAF 3 FULL day LEAF 5 FULL day LEAF 5 FULL day LEAF WT kg/ha LEAF WT g/plant PAR INTERCEPT % ROOT LN cm/cm2 ROOT L/W cm/g ROOT W/L g/cm SHOOT NO #/pl SHOOT NO #/pl SHOOT NO #/m2 STM+CHAFF kg/ha SPIKELETS #/pl STEM WT g/plant TILLER NO.#/pl TILLER NO.#/m2 TOTAL N kg/ha TERMINAL SPKL d	<pre>Full expansion, leaf 3 (Yrdoy) Full expansion, leaf 5 (Yrdoy) Last leaf date (YrDoy) Leaf weight (kg/ha) Leaf weight (g/plant) PAR interception (%) Root length/weight (cm/g) Root length/weight (cm/g) Root weight/length (g/cm) Shoot (apex) number (no/plant) Shom (apex) number (no/plant) Stem weight (g dm/plant) Tiller number (no/plant) Tiller number (no/plant) Tiller number (no/plant) Tiller number (no/plant) Total N at maturity (kg N/ha) Terminal spikelet date (YrDoy)</pre>		IB EX IB EX
LF5D LLFD LWAM PARI RLAD RLWD S#PD S#AD SCWA SP#P SWPD T#PD T#PD T#AD TNAM TSPD	LEAF 3 FULL day LEAF 5 FULL day LEAF 5 FULL day LEAF WT kg/ha LEAF WT g/plant PAR INTERCEPT % ROOT LN cm/cm2 ROOT L/W cm/g ROOT W/L g/cm SHOOT NO #/pl SHOOT NO #/pl SHOOT NO #/pl STM+CHAFF kg/ha SFIKELETS #/pl STEM WT g/plant TILLER NO.#/pl TILLER NO.#/pl	<pre>Full expansion, leaf 3 (Yrdoy) Full expansion, leaf 5 (Yrdoy) Last leaf date (YrDoy) Leaf weight (kg/ha) Leaf weight (g/plant) PAR interception (%) Root length (cm/cm2) Root length/weight (cm/g) Root weight/length (g/cm) Shoot (apex) number (no/plant) Shoot (apex) number (no/m2) Stem weight (g dm/plant) Tiller number (no/plant) Tiller number (no/plant) Tiller number (no/m2) Total N at maturity (kg N/ha)</pre>		IB EX IB EX
LF5D LLFD LWAM PARI RLAD RLAD RWLD S#AD SCWA SP#P SWPD T#PD T#PD T#AM TSPD TWAM	LEAF 3 FULL day LEAF 5 FULL day LEAF 5 FULL day LEAF WT kg/ha LEAF WT g/plant PAR INTERCEPT % ROOT LN cm/cm2 ROOT L/W cm/g ROOT W/L g/cm SHOOT NO #/pl SHOOT NO #/pl SHOOT NO #/m2 STM+CHAFF kg/ha SPIKELETS #/pl STEM WT g/plant TILLER NO.#/pl TILLER NO.#/m2 TOTAL N kg/ha TERMINAL SPKL d	<pre>Full expansion, leaf 3 (Yrdoy) Full expansion, leaf 5 (Yrdoy) Last leaf date (YrDoy) Leaf weight (kg/ha) Leaf weight (g/plant) PAR interception (%) Root length/weight (cm/g) Root length/weight (cm/g) Root weight/length (g/cm) Shoot (apex) number (no/plant) Shom (apex) number (no/plant) Stem weight (g dm/plant) Tiller number (no/plant) Tiller number (no/plant) Tiller number (no/plant) Tiller number (no/m2) Total N at maturity (kg N/ha) Terminal spikelet date (YrDoy)</pre>		IB EX IB EX

Z21D ZADOKS 21 day	Zadoks 21 date (YrDoy)	IB EX
Z30D ZADOKS 30 day	Zadoks 30 date (YrDoy)	IB EX
Z31D ZADOKS 31 day	Zadoks 31 date (YrDoy)	IB EX
Z37D ZADOKS 37 day	Zadoks 37 date (YrDoy)	IB EX
Z39D ZADOKS 39 day	Zadoks 39 date (YrDoy)	IB EX
TDWA TOTAL+D kg/ha	Tops+roots+storage+dead (kg dm/ha)	IB EX
CDWA CANOPY+D kg/ha	Tops+dead wt (kg dm/ha)	IB EX
LALN LEAF AREA,NEW	Leaf area,new leaves (cm2 lf-1)	IB EX
BR1D BRANCH 1 YrDoy	Branch 1 date (YrDoy)	IB EX
BR2D BRANCH 2 YrDoy	Branch 1 date (YrDoy)	IB EX
BR3D BRANCH 3 YrDoy	Branch 1 date (YrDoy)	IB EX
BR4D BRANCH 4 YrDoy	Branch 1 date (YrDoy)	IB EX
SDWT SEED WT g/pl	Seed weight (g pl-1)	IB EX
HWAD YIELD kg/ha	Yield on specified day (kg dm/ha)	IB EX

APPENDIX D. WEATHER DATA CODES

Headers used in the @ line to identify variables are listed first; codes (`flags') used to designate data types are listed next.

The fields in the file are as follows: CDE The `universal' code used to facilitate data interchange. DESCRIPTION A description of the code, with units. SO The source of the codes (IB=IBSNAT). Codes added by a user should be referenced in this field and the name and address of the person adding the code should be entered as a comment (ie.with a `!' in column 1) below this note. This is important to ensure that information from different workers can be easily integrated.

*Headers

^Headers		
@CDE	DESCRIPTION	SO
ALPHA	WGEN parameter	IB
ANGA	Angstrom `a' coefficient	IB
ANGB	Angstrom 'b' coefficient	IB
DATE	Date, year + days from Jan. 1	IB
DEWP	Dewpoint temperature, ~C	IB
DURN	Duration of summarization period for climate files, Yr	IB
ELEV	Elevation, m	IB
GSDU	Growing season duration, Day	IB
GSST	Growing season start day, Doy	IB
IN	Institute code	IB
LAT	Latitude, degrees (decimals)	IB
LONG	Longitude, degrees (decimals)	IB
MONTH	Month, #	IB
NAMN	Temperature minimum, monthly average, C	IB
NASD	WGEN parameter	IB
PAR	Photosynthetic radiation, moles m-2 day-1	IB
PDW	WGEN parameter	IB
RAIN	Rainfall (incl.snow), mm day-1	IB
RAIY	Rainfall, yearly total, mm	IB
REFHT	Reference height for weather measurements, m	IB
RHUMM	Relative humidity average over whole day for month, %	IB
RNUM	Rainy days, # month-1	IB
RTOT	Rainfall total, mm month-1	IB
SAMN	Solar radiation, monthly average, MJ m-2 d-1	IB
SDMN	WGEN parameter	IB
SDSD	WGEN parameter	TB
SI	Site code	IB
SRAD	Solar radiation, MJ m-2 day-1	IB
SRAY	Solar radiation, yearly average, MJ m-2 day-1	IB
START	Start of summary period for climate (CLI) files, Year	IB
SWMN	WGEN parameter	IB
SWSD	WGEN parameter	IB
TAMP	Temperature amplitude, monthly averages, ~C	IB
TAV	Temperature average for whole year, ~C	IB
TMAX	Temperature average for whole year, we Temperature maximum, ~C	IB
TMIN	Temperature minimum, ~C	IB
WIND		IB
WIND	Wind speed average, m sec-1 Windspeed average over whole day for month, m s-1	IB
WINDM		IB
	Reference height for windspeed measurements, m	
WRUN	Wind run, km day-1	IB
XAMN	Temperature maximum, monthly average, C	IB
XDMN	WGEN parameter	IB
XDSD	WGEN parameter	IB
XWMN	WGEN parameter	IB
XWSD	WGEN parameter	IB

*Flags	3	
Flags	attached to data to indicate the nature of the original data. Upper case flags =	
origir	nal data replaced; lower-case flags = original data.	
@CDE	DESCRIPTION	SO
A	Above maximum - data replaced	IB
a	Above maximum - but original data left	IB
в	Below minimum - data replaced	IB
b	Below minimum but original data left	IB
D	Decadal averages only in original file - data replaced	IB
d	Decadal averages only in original file - but original data left	IB
E	Format error in original file - data replaced	IB
e	Format error in original file - but original data left	IB
Н	Solar radiation as sunshine hours - data replaced	IB
h	Solar radiation as sunshine hours - but original data left	IB
M	Monthly averages only in original file - data replaced	IB
m	Monthly averages only in original file - but original data left	IB
N	No data in original file - data replaced	IB
n	No data in original file - but original data left	IB
R	Rate of change exceeded - data replaced	IB
r	Rate of change exceeded - but original data left	IB

Volume 2-2

G. HOOGENBOOM, J.W. JONES, P.W. WILKENS, W.D. BATCHELOR, W.T. BOWEN, L.A. HUNT, N.B. PICKERING, U. SINGH, D.C. GODWIN, B. BAER, K.J. BOOTE, J.T. RITCHIE, J.W. WHITE

University of Georgia, University of Florida International Fertilizer Development Center University of Guelph, Michigan State University Centro Internacional de Agricultura Tropical, University of Hawai International Benchmark Sites Network for Agrotechnology Transfer Crop Models • Cr

ACKNOWLEDGEMENTS

The generic models, CERES, CROPGRO and CROPSIM, used in DSSAT v3, were developed by groups of modelers working on a specific model within the generic ones. In order to give due credit to these scientists and their contributions to a model or models, the following listing of authors by model name is provided.

CERES-BARLEY

S. OTTER-NACKE, J.T. RITCHIE, D.C. GODWIN AND U. SINGH Michigan State University and International Fertilizer Development Center

CERES-MAIZE

J.T. RITCHIE, U. SINGH, D.C. GODWIN, W.T. BOWEN

Michigan State University and International Fertilizer Development Center

CERES-MILLET

U. SINGH, J.T. RITCHIE AND W.T. BOWEN International Fertilizer Development Center and Michigan State University

CERES-Sorghum

J.T. RITCHIE, D.C. GODWIN AND U. SINGH Michigan State University and International Fertilizer Development Center

CERES-WHEAT

D.C. GODWIN, J.T. RITCHIE AND U. SINGH International Fertilizer Development Center and Michigan State University

CERES-RICE

U. SINGH, D.C. GODWIN AND J.T. RITCHIE International Fertilizer Development Center and Michigan State University

N.B. The following individuals contributed to the development of one or more of the CERES models: L.A. Hunt, P.W. Wilkens, G. Smallwood, B. Baer and G. Alargarswamy.

CROPGRO-DRY BEAN

G.HOOGENBOOM, J.W. WHITE, J.W. JONES, K.J. BOOTE, W.T. BOWEN, N.B. PICKERING AND W.D. BATCHELOR

University of Georgia, Centro International de Agricultura Tropical, University of Florida and International Fertilizer Development Center

CROPGRO-PEANUT

K.J. BOOTE, J.W. JONES, G. HOOGENBOOM, N.B. PICKERING,

W.D. BATCHELOR AND W.T. BOWEN

University of Florida, University of Georgia and International Fertilizer Development Center

CROPGRO-SOYBEAN

J.W. JONES, K.J. BOOTE, G. HOOGENBOOM, W.T. BOWEN, N.B. PICKERING AND W.D. BATCHELOR

University of Florida, University of Georgia and International Fertilizer Development Center

CROPSIM-CASSAVA

R.B. MATTHEWS, L. A. HUNT, P. W. WILKENS, G. HOOGENBOOM AND W.T. BOWEN

University of Guelph, International Fertilizer Development Center and University of Georgia

PREFACE

The information presented in the example and output sections of this Part is representative of the results you can produce from your copy of the DSSAT v3 crop models. These are examples only, however, and your results may vary slightly from the results you receive, due to the evolutionary nature of the crop models. Incremental improvements, many suggested by users as they calibrate and validate the models with their own data sets, are constantly being evaluated and implemented. Therefore, post-press changes to the models may reflect improvements implemented after printing of this Volume.

Crop Models • Cr

CHAPTER ONE.

The crop models developed under the auspices of the International Benchmark Sites Network for Agrotechnology Transfer (IBSNAT) Project are process oriented computer models which simulate growth, development, and yield as a function of plant genetics, weather and soil conditions, and crop management selections. These include models for the following crops: aroids (Colocasia esculenta L. [taro] & Xanthosoma sagittifolium L.[tannier]), barley (Hordeum vulgare L.), cassava (Manihot esculenta L.), corn (Zea mays L.), dry bean (Phaseolus vulgaris L.), millet (Pennisetum americanum L.), peanut (Arachis hypogea L.), potato (Solanum tuberosum L.), rice (Oryza sativa L.), sorghum (Sorghum bicolor L.), soybean (Glycine max [L.] Merr.) and wheat (Triticum eastivum L.). In the Decision Support System for Agrotechnology Transfer (DSSAT) v2.1 (IBSNAT 1989; Jones et al. 1990) individual models existed for each crop (Table 1). As part of the move to DSSAT v3, crop models were combined to avoid coding duplication and other problems associated with model improvement. For the family of grain legume crops a generic model was developed called CROPGRO, which is being extended to include other crops, such as tomato. The grain cereals, except for CERES-Rice, were combined into a generic grain cereal model called CERES. Development of the root crop models will continue as separate models.

Previously, individual user's guides were developed for the crop models SOY-GRO (Jones et al., 1989), PNUTGRO (Boote et al., 1989), BEANGRO (Hoogenboom et al., 1991), CERES-Wheat (Godwin et al., 1989), CERES-Maize (Ritchie et al., 1989), CERES-Barley (Otter-Nacke et al., 1991), and CERES-Rice (Singh et al., 1993). In DSSAT v3, one model user-interface was developed for use by all crop models, and thus, one user's guide.

Since, however, these crop models can also be run as stand-alone models, there is some flexibility as to how the executables, input and output files are organized on a computer disk. The organization of these files for running under both the DSSAT v3 Shell (Volume 1-3, Hunt et al. 1994) and as stand alones is described in Appendix C of this Part.

The operation of the crop models in DSSAT v3 using the DSSAT v3 Shell (Volume 1-3, Hunt et al. 1994) interface is described herein.

TABLE T. OLD AND NEW OLNERATION OROF SIMULATION MODELS.									
Crop	DSSAT v2.1 Model	DSSAT v3 Model	Reference						
Cereals									
Barley Corn (Maize) Millet Rice Sorghum	CERES-Millet CERES-Rice CERES-Sorghum	Generic CERES Generic CERES Generic CERES CERES-Rice Generic CERES	Otter-Nacke et al. (1991) Ritchie et al.(1989) Singh et al. (1991) Singh et al. (1993) Alargarswamy and Ritchie (1991)						
Wheat Grain Legum	CERES-Wheat	Generic CERES	Godwin et al. (1989)						
Dry bean Peanut Soybean	BEANGRO PNUTGRO SOYGRO	CROPGRO CROPGRO CROPGRO	Hoogenboom et al (1994) Boote et al. (1989) Jones et al. (1989)						
Roots and I	Tubers								
Aroids Cassava Potato	SUBSTOR-Aroids N/A SUBSTOR-Potato	N/A CROPSIM-Cassava N/A	Prasad et al. (1991) Matthews and Hunt (1994) Griffin et al. (1993)						

TABLE 1. OLD AND NEW GENERATION CROP SIMULATION MODELS.

DSSAT v3, Volume 2 • DSSAT v3,

CHAPTER TWO. INPUTS AND OUTPUTS

The DSSAT v3 crop models incorporate the input and output ASCII file structures fully described in Volume 2-1 (Jones et al. 1994) of this book. This I/O system is considerably different than the crop model inputs and outputs structures found in DSSAT v2.1 (IBSNAT 1989, 1990).

WEATHER

Though daily weather formats are similar to those in DSSAT v2.1, additional features have been added to accommodate improved quality control of weather data. A space has been designated next to each data field for characters to document when data were filled from other sources and the reason for filling. The quality control options for weather data in DSSAT v3 are handled by WeatherMan, described in Volume 3-3 (Hansen et al. 1994) of this book. In the DSSAT v3 crop models, including CROPGRO and CERES, the name of the weather file is constructed internally from the weather file information contained in the experiment input file. The code for the weather file includes eight characters, such as UFGA8101, and the file UFGA8101.WTH would be constructed in the model code if observed weather data would be used as input, or the file UFGA8101.WTG would be constructed in the model code if externally generated weather data would be used as input. The model will look first in the current directory for this file. If the model is unable to locate the weather file in the current crop model data directory, the model will check the path specified by the DSSAT v3 path-declaration file (DSSATPRO.FLE). For a complete description of the weather file (FILEW) formats and structures, see Volume 2-1 (Jones et al. 1994) of this book.

SOIL

The soil file has also been changed in DSSAT v3. First, more information was added in an attempt to make the soil inputs more generally applicable by other crop models. For example, clay and silt percentages are now included, and new inputs were defined to allow for simulation of soil phosphorus dynamics. The first release of the DSSAT v3 models will not include the phosphorus module in any of the crop models. Secondly, all new models use the same soil file, whereas models in DSSAT V2.1 required a separate soil file for each crop. The new soil file is usually named SOIL.SOL, but the models will accept soil profile data in input files specific for each institute, e.g. UF.SOL would contain soil profile information defined by the University of Florida. The models will first look for the SOIL.SOL file in the "current" path, and if the model is unable to locate the SOIL.SOL file, the model will try to locate the UF.SOL file. The file name UF.SOL is constructed by the models based on the institute code of the institute at which the experiment was performed. For a complete description of the soil file (FILES) formats and structures, see Volume 2-1 (Jones et al. 1994) of this book.

CROP MANAGEMENT

In DSSAT v3, details of a crop experiment, such as field information, treatments, planting information, initial conditions, irrigation, residue and fertilizer management, and harvest information are contained in one single file. This single file is referred to as experiment details file or FILEX. A user can name FILEX based on institute id, site id, year, experiment number, and crop code; the naming convention is similar to the one of DSSAT V2.1 (IBSNAT, 1989; 1990). For example, the file UFGA8101.SBX is the file name for a soybean experiment conducted in 1981 at the University of Florida in Gainesville (UFGA). The experiment details file FILEX is divided into sections; a "*" designates each section, and the file uses the symbol "@ "in column 1 of lines that contain codes or headers for variables defined in the section following this header line. The file uses "!" to define comment lines; blank lines can also be used in the file to delineate data input blocks and these lines are ignored by the model when reading the experiment details file. For a complete description of the experiment details file (FILEX) formats and structures, see Volume 2-1 (Jones et al. 1994) of this book.

SIMULATION CONTROL

Each DSSAT v3 experiment details file FILEX contains a *SIMULATION CON-TROL section that fully specifies all options for a simulation run. This section also defines automatic management characteristics for planting, irrigation, fertilizer, residue, and harvest. These automatic management options allow the user to define management conditions for hypothetical "experiments." For a complete description of the Simulation Controls section of FILEX, see Volume 2-1(Jones et al. 1994) of this book.

Average Final Field Data

The DSSAT v3 models use two files for field observed data and other related information. The first file contains averages of field observations, and this information is used for comparison between model simulated data and field observed

Crop Models • Cr

TABLE 2. AVERAGE FINAL FIELD DATA FILE. (FILEA = "UFGA7801.SBA")

*EXP.DATA (A): UFGA7801SB BRAGG, IRRIGATED & NON-IRRIGATED

@TRNO	HWAM	HWUM	H#AM	H#UM	LAIX	CWAM	BWAH	ADAT	MDAT	PD1T	PDFT	PWAM	HIAM	THAM
1	3041.	.1440	2223.	1.96	4.67	6068.	1958.	211	282	233	233	4009.	.501	75.85
2	1178.	.1230	969.	1.85	4.50	3491.	1756.	211	282	233	233	1602.	.337	73.53

data to calibrate, validate and test the models. The field average observational data file is called FILEA. For the example used in the Crop Management section above, this file would be called UFGA8101.SBA. The format for FILEA in DSSAT v3 is different from the format of FILEA in DSSAT v2.1. Generally, the data in FILEA are in stored in columns, which are each 6 characters in width, with a header above each column indicating the type of data in that column. The crop model uses the same header information for its outputs, so that corresponding simulated and observed data can be matched regardless of the location of these columns in the input files. An abbreviation file (DATA.CDE) defines these headers, including appropriate units of the variables and values associated with those headers. These abbreviations are also used by the data handling components of DSSAT v3, graphics, and seasonal and sequence analysis programs. An example of a FILEA is shown in Table 2. For a description of FILEA formats and structures, see Volume 2-1 (Jones et al. 1994) of this book.

TIME-COURSE FIELD DATA

In addition to FILEA, a second file is used to store field data for within-season measurements. This time-course data file, FILET, can contain an unlimited number of 6-character columns. Data that were measured in the field can be stored in this file, and these can include both measured soil, plant, and pest information as a function of day of year. For example FILET, e.g. UFGA8101.SBT, is the time course file for an experiment conducted the University of Florida in Gainesville in 1981. An example of a FILET is shown in Table 3. For a description of FILET formats and structures, see Volume 2-1 (Jones et al. 1994) of this book.

OUTPUT FILES

Outputs from the models are written to the following files:

OVERVIEW.OUT which contains a copy of the output as shown on the computer screen during the simulation;

SUMMARY.OUT which contains a one line summary of the main developmental events, water and nitrogen variables, and yield and yield components;

GROWTH.OUT, which contains a summary of the growth balance variables over time;

WATER.OUT, which contains a summary of the soil and plant water variables over time;

NITROGEN.OUT, which contains a summary of the soil and plant nitrogen variables over time;

CARBON.OUT, which contains a summary of some of the main soil and plant carbon variables; and

PEST.OUT, which contains a summary of the pest variables as a function of time.

FILES GROWTH.OUT, WATER.OUT, NITROGEN.OUT, CARBON.OUT, and PEST.OUT contain time-series outputs at steps as small as one day or as large as specified by the user. Each file can be switched on or off, and the frequency of daily outputs can be specified in the Simulation Control section of FILEX. These output files are temporary and are erased and overwritten at the start of each new simulation run. Users, however, can select an option to save these files with experiment specific file names. This option can be fixed permanently through one variable in FILEX or interactively through the Sensitivity Analysis option. For example, the above described 1981 University of Florida experiment output files could be saved as UFGA8101.SBO, UFGA8191.SBS, UFGA8191.SBG, UFGA8101.SBW, UFGA8101.SBN, UFGA8101.SBC, and UFGA8101.SBD, respectively. For a description of these file formats and structures, see Volume 2-1 (Jones et al. 1994) of this book

DSSAT v3, Volume 2 • DSSAT v3,

TABLE 3. TIME-COURSE FIELD DATA FILE. (FILET = "UFGA7801.SBT")

*EXP.DATA (T): UFGA7801SB BRAGG, IRRIGATED & NON-IRRIGATED

@TRNO	DATE	LAID	SWAD	GWAD	LWAD	CWAD	PWAD	SHAD	SH%D	SLAD	HIAD
1	78194	.89	178	0.	266	444	0.	0.	0.00	334.6	0.000
1	78201	1.28	300	0.	366	667	0.	0.	0.00	349.7	0.000
1	78208	1.91	551	0.	656	1207	0.	0.	0.00	291.2	0.000
1	78215	2.86	943	0.	843	1786	0.	0.	0.00	339.3	0.000
1	78222	4.17	1561	0.	1187	2748	0.	0.	0.00	351.3	0.000
1	78229	3.90	1956	0.	1204	3160	0.	0.	0.00	323.9	0.000
1	78236	4.66	2947	0.	1723	4792	123	123	0.00	270.5	0.000
1	78243	4.47	3144	0.	1772	5224	308	308	0.00	252.3	0.000
1	78250	4.44	3303	182	1631	5740	805	623	22.60	272.2	0.030
1	78257	3.99	3326	754	1568	6507	1613	859	46.75	254.5	0.116
1	78264	4.67	3657	1912	1769	8586	3161	1249	60.49	264.0	0.222
1	78271	2.83	2732	2223	1180	7144	3232	1009	68.78	239.8	0.311
1	78278	2.09	2515	2730	858	7136	3763	1033	72.55	243.6	0.383
1	78285	.47	1851	2913	170	5866	3845	932	75.76	276.5	0.497
1	78292	.09	2064	3169	34	6270	4172	1003	75.96	264.7	0.505
2	78194	.75	160	0.	244	405	0.	0.	0.00	307.4	0.000
2	78201	1.08	251	0.	311	563	0.	0.	0.00	347.3	0.000
2	78208	1.81	535	0.	626	1161	0.	0.	0.00	289.1	0.000
2	78215	3.29	1080	0.	974	2054	0.	0.		337.8	
2	78222	4.38	1663	0.	1261	2923	0.	0.	0.00	347.3	0.000
2	78229	4.30	2083	0.	1392	3475	0.	0.		308.9	
2	78236	4.21	2556	0.	1517	4184	112	112	0.00		
2		4.50	2673	0.	1439	4431	319	319			
2	78250	2.09	1998	42	838	3104	268	226	15.67		
2	78257	3.24	2650	253	1220	4530	661	408		265.6	
2	78264	2.30	2609	471	931	4440	901	430		247.0	
2	78271	1.14	2113	775	498	3812	1200	425		228.9	
2		.85	1905	782	371	3398	1122	340	69.70		
2	78285	.53	1922	1149	236	3732	1574	425	73.00	224.5	
2	78292	.07	1590	1206	30	3250	1630	424	73.99	233.3	0.371

Crop Models • Cr

CHAPTER THREE. SYSTEM OVERVIEW

FLOW OF INFORMATION

The DSSAT v3 crop simulation models consist of three modules: model driver, input module and crop simulation module. Figure 1 presents a schematic overview of these modules. The main difference with the DSSAT v2.1 models is that the input and sensitivity analysis section of each model is now separated from its model simulation section. In DSSAT v3, one input and sensitivity module is used by all crop simulation models. When a user starts a DSSAT v3 model,

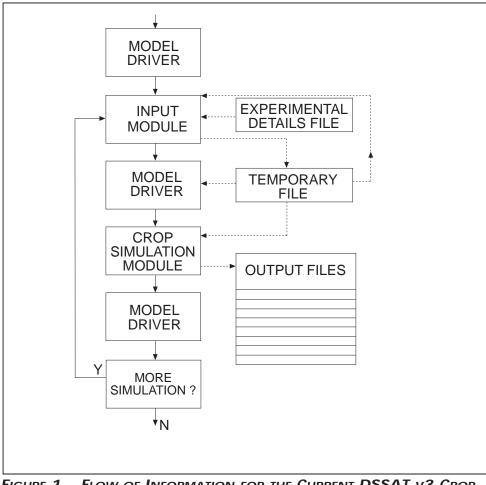


FIGURE 1. FLOW OF INFORMATION FOR THE CURRENT DSSAT v3 CROP SIMULATION MODELS.

the model driver program, MDRIV940.EXE, is executed. The driver program calls the model input module, MINPT940.EXE, which reads the experiment list file (EXP.LST) and experiment data file (FILEX). While reading these files, the input module displays various screens, including those for experiment and treatment selection options. When a user has selected and/or modified the options available in the sensitivity analysis section, a temporary file is written. Control is given back to the model driver and the simulation module is called (IBSNAT30.INP). The simulation module does not provide any interaction with the user; instead it reads the temporary input file, simulates growth over a season and outputs simulation results on the screen. Upon completion of a simulation, control is returned to the model driver, and a user can then choose to run another simulation run or terminate the simulation. The format of the temporary file (IBSNAT30.INP) is discussed later in this chapter.

COMPONENT STRUCTURE

CROP MODEL DRIVER

Because the crop model driver was developed to control the calling of the input and the crop simulation modules, all EXE files need to be located in the same directory for the system to work properly (Figure 2). Typically, this would be the C:\DSSAT3 directory. The models, however, can be run from any data directory, as long as the path where the EXE files are located is specified. To run a model, the driver is executed from the directory containing input data, and the names of the input module and the crop module are specified as command-line arguments. The default syntax is the following (see next page):



FIGURE 2. DSSAT v3 CROP SIMULATION MODULES AND INPUT/OUTPUT FILE HANDLING.

\PATH\MDRIV940.EXE MINPT940.EXE CRGRO940.EXE

where PATH is the path for all EXE files (e.g. C:\DSSAT3); MDRIV940.EXE is the name of the model driver; MINPT940.EXE is the name of the input module; and CRGRO940.EXE is the name of the crop simulation module. Current crop simulation modules available include :

GECER940.EXE	-	Generic CERES module for barley, maize, millet, sorghum, an								
	W	heat								
RICER940.EXE	-	CERES -Rice module for rice								
CRGRO940.EXE	-	Generic CROPGRO module for dry bean, peanut and soybean,								
CSSIM940.EXE	-	CROPSIM-Cassava module for cassava.								

Additional options can be included on the command line:

\PATH\MDRIV940.EXE MINPT940.EXE CRGRO940.EXE TYPEIO RNMODE

where TYPEIO is a one-character variable, used as a file type for transfer of information between the input module and crop simulation module. Options include :

- I A single treatment input file using FILEX format with no headers, blank lines or comment lines. TYPEIO = "I" is used by the GECER940.EXE, RICER940.EXE, and CRGR0940.EXE crop simulation modules.
- X FILEX single treatment format with headers and blank lines.TYPEIO = "X" is used by the CSSIM940.EXE crop simulation module.

RNMODE is a one-character variable, used to define the execution or operational mode of the model. Options include :

- I Interactive simulation, allowing for sensitivity analysis screen selections;
- A Run all treatments defined for one particular experiment;
- G Run in the genetic coefficient estimator mode, used with GenCalc only (see Volume 3-4, Hunt et al. 1994, of this book);
- N Run in the seasonal analysis mode, used with the seasonal analysis program only (see Volume 3-1, Thornton et al. 1994a, of this book);
- Q Run in the sequence analysis mode, used with the sequence analysis program only (see Volume 3-2, Thornton et al. 1994b, of this book);
- S Run in the spatial analysis mode with Geographic Information Systems (GIS) only;
- F Run in the farming systems analysis mode.

General users should not be concerned about these options, as they are controlled by individual driver programs.

For all RNMODE options, except "I," the experiment and treatment number can also be specified :

\PATH\MDRIV940.EXE MINPT940.EXE CRGR0940.EXE TYPEIO RNMODE EXPARG TRNARG

where EXPARG is the experiment number and TRNARG is the treatment number. Both EXPARG and TRNARG are integers.

The model driver program described here is normally used only for interactive simulations. Other components within DSSAT v3, such as the genetic coefficient calculator and seasonal analysis, sequence analysis and GIS programs, use their own driver programs to interface both with the model input module and crop simulation modules.

MODEL INPUT MODULE

The current DSSAT v3 input module was designed to handle both the reading of FILEX and error checking, as well as to make available options by which the user can modify specific inputs in the Sensitivity Analysis section. An example of this option will be presented later in this chapter. The function of the model input module is to read the experiment details file (FILEX), extract the required information to run one treatment, and to create a temporary input file to be read by the crop simulation module. This allows for the addition of other crop simulation models to the system, since only a temporary output file needs to be created in the prescribed format for use by the DSSAT v3 crop simulation models.

Without the model driver program, the following syntax is required to run the input module :

\PATH\MINPT940.EXE CRGRO940.EXE FILEIO TYPEIO RNMODE EXPARG TRNARG

where CRGRO940.EXE is the crop simulation module, with options as specified earlier; FILEIO is the name of the temporary input file used to transfer information between the input module and the crop simulation module – this name is usually controlled by the driver program which runs the entire system.

CROP SIMULATION MODULE

When the crop simulation module is executed, it reads the temporary input file, IBSNAT30.INP. This single treatment input file was created by the input module and

runs a single season simulation. The syntax to run a crop simulation module, without the model driver program, is the following :

\PATH\CRGRO940.EXE FILEIO TYPEIO RNMODE REPARG

The options specified on the command line are the same as those discussed for the input module, except for REPARG, which is the run number of the current simulation. It is critical that the correct file type be specified for the temporary file, since it contains the reduced input information for the crop model. Normally, FILEIO will be "IBSNAT30.INP" and TYPEIO will be "I." TYPEIO can be set to "X" to create a single treatment version of FILEX, but only the CSSIM940.EXE crop simulation module will work with this option. The system's flexibility is such that when a new crop simulation module is added, only the input module needs to be modified to specify the input file type of the new crop simulation module and a subroutine added to write the new format.

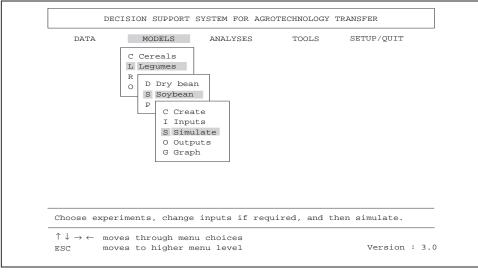
CROP MODEL EXECUTION

In the above section, "Component Structure," of this Chapter, detailed information for the various command line arguments is included. In general, however, model users can ignore these individual options, since they are handled internally by the DSSAT v3 Shell, batch programs, or driver programs. Under the SETUP menu in the DSSAT v3 Shell (see Volume 1-3, Hunt et al. 1994, of this book), the user defines each individual module; that is, the crop model driver program (MDDRIV940.EXE), the crop model inputs module (MINPT940.EXE) and one of the crop simulation modules (e.g., GECER940.EXE, RICER940.EXE, CRGRO940.EXE or CSSIM940.EXE). In addition the user defines the file type of the intermediate file, which is set to "I" by default. The remainder of the controls are then handled by the DSSAT v3 Shell.

If a user wants to run each module individually, all command line arguments need to be used correctly and input files need to be available, as some of the individual modules do not handle error checking.

HARDWARE AND SOFTWARE

The DSSAT v3 crop simulation models were developed on personal computers, using Microsoft DOS[™] Versions 5 and 6, and the Microsoft Fortran Compiler[™] Version 5.1. The modules are coded in Fortran 77 to remain compatible with other platforms. The crop models have also been successfully implemented on VAX and SUN computers.


The crop models perform best on computers with 80386 or 80486 processor and math-coprocessors. Minimum memory requirements are 512 KByte of Random Access Memory. Harddisk requirements are at least 1 MByte for all executable and data files.

CHAPTER FOUR. CREATING INPUT FILES

Under the DSSAT v3 Shell main menu item, MODELS (see Volume 1-3, Hunt et al. 1994, of this book), there is a menu of crop models available, separated into grain cereals, grain legumes, root crops, and other crops (see Screen 1). A menu belonging to each group contains a listing of various crops or species for the group selected (see Screen 1 for those crops found under "Legumes"). Although in the DSSAT v3 system all three grain legume crops (dry bean, peanut, and soybean) are simulated with the same model (CROPGRO), users have the option to change the selected crop model through the SETUP menu in the DSSAT v3 Shell and replace it with their own model. Instructions for modifying the SETUP options are presented in Volume 1-3 (Hunt et al. 1994) of this book. If the soybean model is selected, for example, a menu appears (Screen 1), showing a list of available options in the logical sequence a user needs to follow in order to simulate a particular experiment.

Five options are available under each crop model selection :

- 1. Creating a model input file.
- 2. Listing and managing crop model input files.
- 3. Running the crop model.
- 4. Listing and managing crop model output files.
- 5. Graphing simulated results and experimental data.

DSSAT v3, Volume 2 • DSSA

Model Input File For Crop Management

The DSSAT v3 crop model input file (or the experiment details input file, FILEX) can be created through an interactive menu-driven program, XCreate, or through an ASCII text editor. It is important that the input file format be identical to that described in Volume 2-1 (Jones et al. 1994) of this book, including the use of "*" for header sections, "@" for header lines and "!" for comments. The input module uses these characters while reading FILEX for particular sections. It is strongly advised that the XCreate program be used to create FILEX (Screen 2) if a user is unfamiliar or uncomfortable with the strict formats of the input/output documentation (see Volume 2-1, Jones et al. 1994, of this book). Information on the XCreate program can be found in Volume 1-4 (Imamura 1994) of this book. An example of a model input file is found in Table 4.

Critical sections of FILEX include the following :

*TREATMENTS

This defines the treatments of an experiment and the associated treatment factor levels.

*EXP.DETAILS:UF	Treatments	NON-IRRIGATED
*TREATMENTS @N R 0 C TNAME. 1 1 0 0 IRRIGA' 2 1 0 0 NON - :	Culti v ars Fields Soil Analysis Initial Conditions	FACTOR LEVELS IC MP MI MF MR MC MT ME MH SI 1 1 1 0 1 0 0 0 0 1 1 1 1 0 1 0 0 0 0 1
*CULTIVARS @C CR INGENO CN 1 SB IB0001 BR	Planting Irrigation Fertilization	
TD COTT	Residue Tillage/Rotation Chemicals Environment Harvest	FLDS FLST SLTX SLDP 0 00000 -99 180
@C PCR ICDAT IC	100 -99 1.00 1.00 NH4 SNO3 D.6 1.5	

DSSAT v3, Volume 2 • DSSAT v3,

*EXP.DETAILS: UFGA7801SB BRAGG, IRRIGATED & NON-IRRIGATED

TABLE 4. CROP MODEL INPUT FILE. (FILEX = "UFGA7801.SBX")

*TREATMENTS -----FACTOR LEVELS------@N R O C TNAME..... CU FL SA IC MP MI MF MR MC MT ME MH SM

 01
 1
 1
 0
 1
 1
 0
 1
 0
 0
 0
 0
 0
 1

 02
 1
 0
 NON
 IRRIGATED
 1
 1
 0
 1
 1
 0
 0
 0
 0
 0
 1
 1

 *CULTIVARS @C CR INGENO CNAME 1 SB IB0001 BRAGG *FIELDS @L ID_FIELD WSTA.... FLSA FLOB FLDT FLDD FLDS FLST SLTX SLDP ID_SOIL 1 UFGA0001 UFGA7801 -99 0 DR000 0 0 00000 -99 180 IBSB910015 *INITIAL CONDITIONS @C PCR ICDAT ICRT ICND ICRN ICRE 1 SB 78166 100 -99 1.00 1.00 @C ICBL SH20 SNH4 SNO3 1 5 0.086 0.6 1.5 1 15 0.086 0.6 1.5 1 30 0.086 0.6 1.5 1 45 0.086 0.6 1.5 60 0.086 0.6 1.5 1 90 0.076 0.6 0.6 1 120 0.076 0.6 0.5 1 1 150 0.130 0.6 0.5 1 180 0.258 0.6 0.5 *PLANTING DETAILS @P PDATE EDATE PPOP PPOE PLME PLDS PLRS PLRD PLDP PLWT PAGE PENV PLPH 1 78166 -99 29.9 29.9 S R 91 0 4.0 -99 -99.0 -99.0 *IRRIGATION AND WATER MANAGEMENT @I EFIR IDEP ITHR IEPT IOFF IAME IAMT 1 0.75 -99 -99 -99 -99 -99 -99 @I IDATE IROP IRVAL 1 78181 IR001 13 1 78230 IR001 13 1 78235 IR001 13 1 78237 IR001 13 1 78240 IR001 11 1 78242 IR001 11 1 78244 IR001 11 1 78246 IR001 11 1 78250 IR001 11 1 78253 IR001 11 1 78256 IR001 8 1 78259 IR001 8

1 78262 IR001 8 1 78265 IR001 8 1 78269 IR001 7 1 78272 IR001 8 1 78279 IR001 7 1 78283 IR001 8 1 78294 IR001 10 *RESIDUES AND OTHER ORGANIC MATERIALS @R RDATE RCOD RAMT RESN RESP RESK RINP RDEP 1 78166 RE001 1000 0.8 -9 -9 15 *SIMULATION CONTROLS @N GENERAL NYERS NREPS START YRDAY RSEED SNAME..... 1 GE 1 1 S 78166 2150 BRAGG, IRRIGATED & NON-IR @N OPTIONS WATER NITRO SYMBI PHOSP POTAS DISES 1 OP У У У N N N WTHER INCON LIGHT EVAPO INFIL PHOTO @N METHODS 1 ME M M E R S С @N MANAGEMENT PLANT IRRIG FERTI RESID HARVS R R R R M 1 MA @N OUTPUTS FNAME OVVEW SUMRY FROPT GROTH CARBN WATER NITRO MINER DISES LONG 1 OU N Y Y 3 Y Y Y Y N N Y @ AUTOMATIC MANAGEMENT @N PLANTING PFIRST PLAST PH2OL PH2OU PH2OD PSTMX PSTMN 1 PT. 155 200 40 100 30 40 10 @N IRRIGATION IMDEP ITHRL ITHRU IROFF IMETH IRAMT IREFF 1 IR 30 50 100 GS000 IR001 10 0.75 @N NITROGEN NMDEP NMTHR NAMNT NCODE NAOFF 1 NI 30 50 25 FE001 GS000 @N RESIDUES RIPCN RTIME RIDEP 100 1 20 1 RE @N HARVEST HFIRST HLAST HPCNP HPCNR 0 365 100 1 HA 0

*CULTIVARS

This defines the crop (CR) and cultivar (INGENO) which will be simulated.

*FIELDS

This defines the weather station (WSTA) and soil profile (ID_SOIL) which will be used as inputs.

***INITIAL CONDITIONS**

This defines the initial soil water (SH₂O) and nitrogen conditions at the start of simulation (SNH₄ + SNO₃).

*PLANTING DETAILS This defines the planting date (PDATE), plant density (PPOP), row spacing (PLRS) and planting depth (PLDP) at planting.

*IRRIGATION AND WATER MANAGEMENT This defines the dates (IDATE) and amounts (IRVAL) of irrigation applications.

*FERTILIZERS

This defines the dates (FDATE), amount (FAMN) and types (FMDC) of fertilizer applications.

*ENVIRONMENT MODIFICATIONS This defines environmental modifications related to weather conditions.

*HARVEST DETAILS This defines final harvest date ((HDATE) and other harvest parameters.

*RESIDUES AND OTHER ORGANIC MATERIALS This defines initial residue from the previous crop present at the start of simulation.

The importance of the above sections depends on the treatment factor levels selected in the *TREATMENT section.

*SIMULATION CONTROLS

This section is critical, since it defines the various options available for simulation, such as water balance and nitrogen balance simulation, crop management options, and defines the output files and output frequency.

Volume 2-1 (Jones et al. 1994) of this book presents additional details about the specifics of each input section and the headers and header abbreviations for FILEX and various examples.

Experiment List File

The models require an experiment list file (FILEL) to display the various experiments available for simulation (Table 5). The XCreate program updates the experiment list after each new FILEX is created by a user. In addition, DSSAT v3 has an experiment File Manager utility that is accessed by selecting the "I Inputs" option under the MODELS menu of the DSSAT v3 Shell (Screen 1). The File Manager utility allows the user to either include or exclude a particular experiment from the experiment list file, and also includes options to edit a particular experiment data file and search and sort. For a description of this utility, see Volume 1-3 (Hunt et al. 1994) of this book.

TABLE 5. EXPERIMENT LIST FILE. (FILEL = "EXP.LST")

*EXPERIMENT LIST

@# FILENAME EXT ENAME
1 IUCA7901 SBX WAYNE, IRRIGATED & NON-IRRIGATED
2 UFGA7801 SBX BRAGG, IRRIGATED & NON-IRRIGATED
3 UFGA7802 SBX BRAGG, IRR*INSECT DAMAGE
4 UFGA7901 SBX IRRIGATION 31
5 UFGA8101 SBX COBB, IRRIGATED, VEG. & REPROD. STRESS
6 UFQU7901 SBX BRAGG, WELL IRRIGATED
7 UFQU7902 SBX BRAGG, DEFOLIATION STUDY

CHAPTER FIVE. RUNNING THE CROP MODELS

Once a user has created a FILEX and the experiment list file (FILEL) has been updated, a crop model can be run, by selecting the "Simulate" option as shown in Screen 1. A screen displaying the name of the model, the model developers and the institutions which have been involved in model development will be presented. Screen 3 below, for CROPGRO, is an example of the screen which will be presented.

IBSNAT 3.0 Generic Input
CROPGRO 3.00 (93.0)
G. Hoogenboom, J.W. Jones, K.J. Boote, W.T. Bowen,
N.B. Pickering, W.D. Batchelor, and J.W. White
The University of Georgia & University of Florida
CROPERO simulates crop growth and development, soil water dynamics and
soil nitrogen dynamics in response to weather, soil characteristics,
cultivar characteristics, and crop management. This version simulates
soybean, peanut and drybean crops. It uses the IBSNAT standard data
formats and files for DSSAT v3.
September 1994
Please press < ENTER > key (\downarrow) to continue

Pressing the <ENTER> or <RETURN> key in this screen will present Screen 4 (on following page), which displays a list of experiment case studies that can be used for simulation.

CROP	EXPERIMENTAL CASE STUDIES	INST.	SITE ID	YEAR	EXPT. NO
1. SB	WAYNE, IRRIGATED & NON-IRRIGATED	IU	CA	1979	01
2. SB	BRAGG, IRRIGATED & NON-IRRIGATED	UF	GA	1978	01
3. SB	BRAGG, IRR*INSECT DAMAGE	UF	GA	1978	02
4. SB	IRRIGATION 3I	UF	GA	1979	01
5. SB	COBB, IRRIGATED, VEG. & REPROD. STRESS	UF	GA	1981	01
6. SB	BRAGG, WELL IRRIGATED	UF	QU	1979	01
7. SB	BRAGG, DEFOLIATION STUDY	UF	QU	1979	02
EXPE	RIMENT SELECTED ===> 1				
NEW	SELECTION ?> 2				
ИĘМ	SELECIION :> Z				

SCREEN 4.

What is displayed on Screen 4 is actually a listing of FILEL (see Table 5). Any one of these experiments can be selected for simulation. Each item in the list may represent an actual experiment or a hypothetical one created to predict how a crop would perform under specified conditions. For the example shown, Experiment "2" was selected, which was a soybean experiment, conducted in 1978 at the University of Florida in Gainesville

When this experiment is selected, Screen 5 (shown below) is presented.

```
INST. SITE YEAR EXPT. TRT.
                                    ID
                                          ID
____
                                                     NO NO
  BRAGG, IRRIGATED & NON-IRRIGATED
                                     _ _ _ _
                                                          ____
                                          GA 1978 01
1. IRRIGATED
                                    UF
                                                          1
2. NON - IRRIGATED
                                    UF
                                         GA 1978 01
                                                          2
3. RUN ALL TREATMENTS
                                     UF
                                          GA 1978 01
  TREATMENT SELECTED ====>
                          1
  NEW SELECTION ? ====> 1
```


Screen 5 displays the treatments of Experiment "2" selected in Screen 4. For this experiment, there are two treatments, irrigated (Option 1) and non-irrigated (Option 2). In addition, in Screen 5, a user can choose to have the model simulate all treatments of the particular experiment (Option 3). For this example experiment, Option 1 was selected.

When the experiment and the treatment have been selected, Screen 6 (below) is presented.

```
What Would You Like To Do?
0. Run Simulation
1. Select Sensitivity Analysis Options.
CHOICE ? [ Default = 0 ] ===> 0
Please enter Run 1 name : ===> Example
```

SCREEN 6.

In Screen 6, the user can choose to run either a simulation (Option 0) or a sensitivity analysis (Option 1). Option 1 is discussed in some detail in Chapter 7, "Management and Sensitivity Analysis Options." For this example, Option 0, "Run Simulation," was selected.

Following the selection of Option 0, a prompt, as shown in Screen 6, is displayed, and the user is asked to enter a run identifier. This identifier can be any combination of words or characters up to a maximum of 25. For this example, "Example" was entered.

Crop Models • Cr

```
SIMULATION OVERVIEW

RUN 1 : Example

MODEL : CRGR0940 - SOYBEAN

EXPERMIMENT : UFGA7801 SB BRAGG, IRRIGATED & NON-IRRGATED

TREATMENT 1 : IRRIGATED

CROP : SOYBEAN CULTIVAR : BRAGG - MATURITY GROUP7

STARTING DATE : JUN 15 1978 PLANTS/m2 : 29.9 ROW SPACING : 91.cm

WEATHER : UFGA 1978

SOIL : IBSB910015 TEXTURE : - Millhopper Fine Sand

SOIL : IBSB910015 TEXTURE : - Millhopper Fine Sand

SOIL : IBSB910015 TEXTURE : - Millhopper Fine Sand

SOIL : ISBS910015 TEXTURE : - Millhopper Fine Sand

SOIL : IDPTH:180cm EXTR. H20:158.4mm N03: 22.9kg/ha NH4: 16.5kg/ha

WATER BALANCE : IRRIGATE ACCORDING TO FIELD SCHEDULE

IRRIGATION : 190 mm IN 19 APPLICATIONS

NITROGEN BAL. : SOIL-N, N-UPTAKE & DYNAMIC N-FIXATION SIMULATION

N FERTILIZER : NO FERTILIZER APPLIED

RESIDUE/MANURE : 1000 kg/ha IN 1 APPLICATIONS

ENVIRONM. OPT. : DAYL= .0 SRAD= .0 TMAX= .0 TMIN= .0

. : RAIN= .0 CO2 = R 330.0 DEW = .0 WIND= .0

SIMULATION OPT : WATER :Y NITROGEN:Y N-FIX:Y PESTS :N PHOTO :C ET :R

MANAGEMENT OPT : PLANTING:R IRRIG :R FERT :N RESIDUE:R HARVEST:M WTH:M

Please press < ENTER > key to continue
```

SCREEN 7.

Screen 7 (above) displays an overview of the inputs and simulation data for the experiment selected in Screen 4. These data include crop, cultivar and maturity group information; start of simulation and planting dates; row and plant spacing; weather site and year; general soil profile information and initial conditions at the start of simulation; water balance simulation option and irrigation management; nitrogen balance simulation, nitrogen fertilizer management and organic residue; environmental or weather variable modifications; and a summary of simulation and management options.

SUMMARY	OF SOIL	AND G	ENETIC	INPUT	PARAME	TERS				
SOIL DEPTH CM	LOWER U LIMIT I cm3/cm3	IMIT	SW	EXTR SW cm	INIT SW	ROOT DIST	BULK DENS g/cm3	рH	NO3 uqN/q	ORG C %
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$.023	.086 .086 .086 .086 .086 .076 .076 .130 .258	.230 .230 .230 .230 .230 .230 .230 .230	.063 .063 .063 .063 .063 .055 .056 .103 .188		1.00 1.00 .50 .29 .38 .13 .06 .03	1.361.401.461.471.471.431.481.571.79		$\begin{array}{c} 1.50\\ 1.50\\ 1.50\\ 1.50\\ 1.50\\ .60\\ .50\\ .50\\ .50\\ .50\end{array}$.90 .69 .28 .20 .20 .09 .03 .03 .03
TOT-180 SOIL AL RUNOFF		: .1	45.3 8 0	EVAPO	ORATIO	N LIMIT	- kg : 5.00 : .50		MIN. F	: 1.00
SOYBEAN CULTIVAR :IB0001-BRAGGECOTYPE :SB0701-MATURITY GROUP 7CSDVAR :12.33 PPSEN : .32 EMG-FLW:19.50FLW-FSD:17.00 FSD-PHM :36.00WTPSD : .200 SDPDVR : 2.05 SDFDUR :26.00PODDUR :15.00 XFRUIT : 1.00Please press < ENTER> key to continuePODDUR :15.00 XFRUIT : 1.00										

SCREEN 8.

Screen 8 displays more detailed information about the selected experiment's soil profile characteristics and cultivar characteristics. These include the lower limit, drained upper limit and saturated water content, extractable soil water, initial soil water content, relative root distribution, bulk density, pH, initial NO₃ and NH₄, and organic carbon for each soil layer, and total amount in the profile. Also shown are some of the soil surface characteristics such as soil albedo, first stage evaporation limit, soil nitrogen mineralization factor, SCS runoff curve number, and a drainage rate. The fertility factor is currently used only in the grain legume models to account for mineral deficiencies not simulated in the current version of the model or unknown factors that limit growth in a particular soil.

The cultivar characteristics are crop specific and are discussed in Appendix A, "Genetic Coefficients." As shown in this example for soybean, cultivar coefficients include the critical short day for photoperiod sensitivity (CSDVAR); relative sensitivity to photoperiod (PPSEN); optimum number of days from emergence to flowering (EMG-FLW); optimum number of days from flowering to first seed (FLW-FSD); optimum number of days from first seed to physiological maturity (FSD-PHM), individual seed weight (WTPSD); number of seeds per pod (SDPDVR); seed filling duration (SDFDUR) and pod filling duration (PODDUR); and relative biomass partitioning between vegetative and reproductive structures (XFRUIT).

Screens 7 and 8 are displayed during the initialization of the model. Following these initialization screens, Screen 9 (shown on following page) is presented,

which is displayed during the actual model simulation. All the variables shown in this screen are predicted variables.

SIMULAT	SIMULATED CROP AND SOIL STATUS AT MAIN DEVELOPMENT STAGES											
RUN NO.	1	Example										
DATE	CROP AGE		BIOMASS kg/ha	LAI	LEAF NUM.	ET mm	RAIN mm	IRRIG mm	SWATER mm	CROP kg/h		STRESS H2O N
15 JUN 15 JUN 21 JUN 21 JUN 28 JUN 2 JUL 31 JUL 22 AUG 29 AUG 29 AUG 29 AUG 1 SEP 1 OCT 11 OCT 11 OCT 23 OCT 23 OCT	0 0 6 13 17 46 68 68 75 75 78 108 118 130 130	START SIM SOWING EMERGENCE END JUVEN. UNIFOLIATE FLOWER IND FIRST FLOW FIRST FOD END MSNODE END LEAF FIRST SEEN END POD PHYS. MAT HARV. MAT HARVEST	$21 \\ 60 \\ 116 \\ 1854 \\ 4340 \\ 4340 \\ 5304 \\ 5304$	5.22 5.19 5.19 5.13 3.36 2.89 .19	.0 .0 .1 1.2 2.1 8.8 13.9 13.9 15.4 15.4 15.4 15.4 15.4 15.4 15.4	0 0 3 11 20 128 230 230 230 268 268 268 268 268 268 268 268 2401 431 448	0 0 2 2 10 10 274 518 518 518 518 518 518 518 518 534 534 534	0 0 0 0 13 13 26 26 63 85 165 180 190	158 158 157 157 157 186 149 149 139 139 138 98 78 69 69	0 0 1 1 56 156 156 185 185 196 245 263 224 224	0 5.1 5.1 4.3 3.6 3.6 3.6 3.5 3.4 3.3 3.4 3.7	$\begin{array}{c} .00 & .00 \\ .00 & .00 \\ .00 & .06 \\ .00 & .26 \\ .03 & .32 \\ .00 & .27 \\ .00 & .01 \\ .00 & .01 \\ .00 & .00 \\ .00 & .00 \\ .13 & .01 \\ .32 & .07 \\ .47 & .10 \end{array}$
Please press < ENTER > key to continue												

SCREEN 9.

Each model is initialized at the start of simulation date, as specified in the input file. All models operate at daily time steps; thus, growth, development and other variables are incremented daily. Each crop model predicts the critical growth stages for that particular crop as shown in Screen 9 (above) for soybean. At each stage, total biomass, leaf area index (LAI), total number of leaves on the main stem and total nitrogen (CROP) and nitrogen concentration (N) are shown. These variables relate mainly to the carbon and nitrogen balance of the models. In addition, some soil and plant water variables are shown, such as total evapotranspiration (ET), total rainfall received and irrigation applied, and plant extractable soil water. The last two columns in Screen 9 show plant water and nitrogen stress averages calculated from the time of the previous stage until the current stage.

When the last stage, e.g., "HARVEST" for this example, appears, the simulation has ended. The actual time it will take from the start of simulation, "START SIM," until final harvest, can vary from a few seconds to a few minutes, depending on computer hardware and the crop management options selected.

Crop Models • Cr

VARIABLE	PREDICTED	MEASURED
ANTHESIS DATE (dap)	46	45
FIRST PEG / POD (dap)	68	67
FIRST SEED (dap)	78	67
PHYSIOLOGICAL MATURITY (dap)	118	116
POD YIELD (kg/ha)	3941	4009.
SEED YIELD (Kg/ha)	2932	3041.
SHELLING PERCENTAGE (%)	74.41	75.85
WEIGHT PER SEED (g)	.133	.1440
SEED NUMBER (SEED/m2)	2202	2223.
SEEDS/POD	2.05	1.96
MAXIMUM LAI (m2/m2)	5.25	4.67
BIOMASS (kg/ha) AT ANTHESIS	1854	-99
BIOMASS N (kg N/ha) AT ANTHESIS	61	-99
BIOMASS (kg/ha) AT HARVEST MAT.	6107	6068.
STALK (kg/ha) AT HARVEST MAT.	2087	1958.
HARVEST INDEX (kg/ha)	.480	.501
FINAL LEAF NUMBER (MAIN STEM)	15.41	-99
SEED N (kg N/ha)	187	-99
BIOMASS N (kg N/ha)	224	-99
STALK N (kg N/ha)	20	-99
SEED N (%)	6.37	-99
Please press < ENTER> key to continue		

SCREEN 10.

After the seasonal results are presented in Screen 9, model predicted data can be compared with experimental data for the main development stages, yield and yield components, and some of the nitrogen variables (Screen 10, above). When no experiment data are available for a particular stage, a "-99" is displayed for that item.

SCREEN 11.

Screen 11 (above), the final screen in this series, displays a summary of environmental variables derived during the main developmental stages, which include the vegetative growth phase until flowering, the vegetative and reproductive development growth phase from flowering until the start of seed growth, and the reproductive growth phase from beginning seed growth until physiological maturity. To simulate another treatment or another experiment, a user needs to enter a 'Y' at the prompt. An 'N' entry ends the crop model simulation and the user can then print out or graph the simulated results. For a description of the graphing and printing options, see Chapter 7, "Displaying Results."

Screens 7 through 11, which appear on the monitor during an interactive simulation, are stored in a model output file, OVERVIEW.OUT. This file, in ASCII text format, is 80 characters wide, making it easy to either edit this file or print it to a dot matrix or laser printer.

Example listings of the OVERVIEW.OUT file is shown in Table 6A for CERES-Maize and Table 6B for CROPGRO-Soybean.

TABLE 6A. CROP MODEL OUTPUT OVERVIEW FILE FOR CERES-MAIZE. (OUTO = "OVERVIEW.OUT")

*SIMULATION OVERVIEW FILE

*RUN 1 MODEL EXPERIMENT TREATMENT 4	: GECER940 - MAIZE : UFGA8201 MZ N X IRRIGATION, GAINESVILLE
	: MAIZE CULTIVAR : McCurdy 84aa -
STARTING DATE	
PLANTING DATE	: FEB 26 1982 PLANTS/m2 : 7.2 ROW SPACING : 61.cm
WEATHER	: UFGA 1982
SOIL	: IBMZ910014 TEXTURE : FSA - Millhopper Fine Sand
SOIL INITIAL C	: DEPTH:180cm EXTR. H2O:160.9mm NO3: 14.9kg/ha NH4: 21.1kg/ha
WATER BALANCE	: IRRIGATE ACCORDING TO FIELD SCHEDULE
IRRIGATION	: 264 mm IN 16 APPLICATIONS
NITROGEN BAL.	: SOIL-N & N-UPTAKE SIMULATION; NO N-FIXATION
N FERTILIZER	: 401 kg/ha IN 7 APPLICATIONS
RESIDUE/MANURE	: 1000 kg/ha IN 1 APPLICATIONS
ENVIRONM. OPT.	: DAYL= .0 SRAD= .0 TMAX= .0 TMIN= .0
	RAIN= .0 CO2 = R 330.0 DEW = .0 WIND= .0
SIMULATION OPT	: WATER :Y NITROGEN:Y N-FIX:N PESTS :N PHOTO :C ET :R
MANAGEMENT OPT	: PLANTING:R IRRIG :R FERT :R RESIDUE:R HARVEST:M WTH:M

*SUMMARY OF SOIL AND GENETIC INPUT PARAMETERS

	LOWER LIMIT	UPPER LIMIT	SAT SW	EXTR SW	INIT SW	ROOT DIST	BULK DENS	рH	NO3	NH4	ORG C
Cm	cm3/cr						5		ugN/g	5 . 5	%
0- 5	.026	.096	.230	.070	.086	1.00	1.30	7.00	.60	1.50	2.00
5- 15	.025	.086	.230	.061	.086	1.00	1.30	7.00	.60	1.50	1.00
15- 30	.025	.086	.230	.061	.086	.80	1.40	7.00	.60	1.50	1.00
30- 45	.025	.086	.230	.061	.086	.20	1.40	7.00	.60	1.50	.50
45- 60	.025	.086	.230	.061	.086	.20	1.40	7.00	.60	1.50	.50
60- 90	.028	.090	.230	.062	.076	.10	1.45	7.00	.60	.60	.10
90-120	.028	.090	.230	.062	.076	.05	1.45	7.00	.60	.50	.10
120-150	.029	.130	.230	.101	.130	.00	1.45	7.00	.60	.50	.04
150-180	.070	.258	.360	.188	.258	.00	1.20	7.00	.60	.50	.24
TOT-180	6.2	22.3	45.3	16.1	21.4	<cm< td=""><td>- kg</td><td>/ha></td><td>14.9</td><td>21.1</td><td>87080</td></cm<>	- kg	/ha>	14.9	21.1	87080
SOIL ALE	BEDO	: .1	.8	EVAP	ORATIO	N LIMIT	: 2.00		MIN. F	ACTOR	: 1.00
RUNOFF (CURVE ‡	# :60.0	0	DRAI	NAGE R	ATE	: .65		FERT.	FACTOR	: .80
MAIZE	CULTIV	VAR :IB	80035-M	cCurdy	84aa		ECOTYPE	:	-		
P1 :	: 200.0	DO P2	:	.3000	P5	: 94	0.00				
G2 :	: 700.0	00 G3	:	8.000	PHIN	т:75	.000				

$\ast \texttt{SIMULATED}$ CROP and <code>SOIL</code> STATUS AT MAIN DEVELOPMENT STAGES

RUN NO. 1 Example CERES-Maize

Ι	DATE	CROP AGE		IOMASS kg/ha	LAI	LEAF NUM.	ET mm	RAIN mm	IRRIG mm	SWATER mm	CROP N kg/ha %	STRESS H2O N
	FEB FEB	-	Start Sim Sowing	 0 0	.00	.0	 0 1	0	0	152 151		.00.00
	FEB		Germinate	0	.00	.0	1	0	0	151		.00 .00
7	MAR	9	Emergence	29	.00	1.9	11	58	13	205	1 4.4	.00 .00
22	MAR	24	End Juveni	141	.30	7.5	23	60	23	161	5 3.9	.02 .00
27	MAR	29	Floral Ini	275	.52	9.0	35	103	23	179	11 3.9	.00 .01
12	MAY	75	75% Silkin	9251	4.64	23.7	214	361	142	165	194 2.1	.00 .03
22	MAY	85	Beg Gr Fil	11940	4.36	23.7	267	363	201	166	193 1.6	.00 .02
3	JUL	127	Maturity	23149	2.02	23.7	456	661	264	156	245 1.1	.00 .05
3	JUL	127	Harvest	23149	2.02	23.7	456	661	264	156	245 1.1	.00 .05

*MAIN GROWTH AND DEVELOPMENT VARIABLES

@	VARIABLE	PREDICTED	MEASURED
	FLOWERING DATE (dap)	75	75
	PHYSIOL. MATURITY (dap)	127	128
	GRAIN YIELD (kg/ha)	13769	14060
	WT. PER GRAIN (g)	.2971	0.309
	GRAIN NUMBER (GRAIN/m2)	3916	3847.
	GRAINS/EAR	543.90	496.
	MAXIMUM LAI (m2/m2)	4.71	-99
	BIOMASS (kg/ha) AT ANTHESIS	9251	-99
	BIOMASS N (kg N/ha) AT ANTHESIS	194	-99
	BIOMASS (kg/ha) AT HARVEST MAT.	23149	22001
	STALK (kg/ha) AT HARVEST MAT.	11515	10120
	HARVEST INDEX (kg/kg)	.595	-99
	FINAL LEAF NUMBER	23.75	-99
	GRAIN N (kg N/ha)	190	192.9
	BIOMASS N (kg N/ha)	245	267.7
	STALK N (kg N/ha)	55	74.8
	SEED N (%)	1.64	1.60

Crop Models • Cr

*ENVIRONMENTAL AND STRESS FACTORS

MAIZE YIELD : 13769 kg/ha [219.3 bu/acre]

TABLE 6B. CROP MODEL OUTPUT OVERVIEW FILE FOR CROPGRO-SOYBEAN.(OUTO = "OVERVIEW.OUT")

*SIMULATION OVERVIEW FILE

*RUN 1 MODEL EXPERIMENT TREATMENT 1	:	Example CROPGRO - Soybean CRGRO940 - SOYBEAN UFGA7801 SB BRAGG, IRRIGATED & NON-IRRIGATED IRRIGATED								
CROP	:	SOYBEAN CULTIVAR : BRAGG - MATURITY GROUP 7								
STARTING DATE	:	JUN 15 1978								
PLANTING DATE	:	JUN 15 1978 PLANTS/m2 : 29.9 ROW SPACING : 91.cm								
WEATHER	:	UFGA 1978								
SOIL	:	IBSB910015 TEXTURE : FSA - Millhopper Fine Sand								
SOIL INITIAL C		DEPTH:180cm EXTR. H20:158.4mm NO3: 22.9kg/ha NH4: 16.5kg/ha								
WATER BALANCE		IRRIGATE ACCORDING TO FIELD SCHEDULE								
IRRIGATION		190 mm IN 19 APPLICATIONS								
NITROGEN BAL.		SOIL-N, N-UPTAKE & DYNAMIC N-FIXATION SIMULATION								
N FERTILIZER	:	NO FERTILIZER APPLIED								
RESIDUE/MANURE	:	1000 kg/ha IN 1 APPLICATIONS								
ENVIRONM. OPT.	:	DAYL= .0 SRAD= .0 TMAX= .0 TMIN= .0								
		RAIN= .0 CO2 = R 330.0 DEW = .0 WIND= .0								
SIMULATION OPT	:	WATER :Y NITROGEN:Y N-FIX:Y PESTS :N PHOTO :C ET :R								
MANAGEMENT OPT	:	PLANTING:R IRRIG :R FERT :N RESIDUE:R HARVEST:M WTH:M								

*SUMMARY OF SOIL AND GENETIC INPUT PARAMETERS

SOIL DEPTH	LOWER LIMIT	UPPER LIMIT	SAT SW	EXTR SW	INIT SW	ROOT DIST	BULK DENS	рH	NO3	NH4	ORG C
CM	cm3/cr	n3 c	m3/cm3	CM	3/cm3		g/cm3		ugN/g	ugN/g	00
0- 5	.023	.086	.230	.063	.086	1.00	1.36	5.30	1.50	.60	.90
5- 15	.023	.086	.230	.063	.086	1.00	1.40	5.40	1.50	.60	.69
15- 30	.023	.086	.230	.063	.086	.50	1.46	5.70	1.50	.60	.28
30- 45	.023	.086	.230	.063	.086	.29	1.47	5.80	1.50	.60	.20
45- 60	.023	.086	.230	.063	.086	.29	1.47	5.80	1.50	.60	.20
60- 90	.021	.076	.230	.055	.076	.38	1.43	5.90	.60	.60	.09
90-120	.020	.076	.230	.056	.076	.13	1.48	5.90	.50	.60	.03
120-150	.027	.130	.230	.103	.130	.06	1.57	5.90	.50	.60	.03
150-180	.070	.258	.360	.188	.258	.03	1.79	5.90	.50	.60	.03
TOT-180	5.5	21.4	45.3	15.8	21.4	<cm< td=""><td>- kg/</td><td>/ha></td><td>22.9</td><td>16.5</td><td>38949</td></cm<>	- kg/	/ha>	22.9	16.5	38949
SOIL ALBEDO : .18 EVAPORATION LIMIT									MIN. F	ACTOR	: 1.00
RUNOFF CURVE # :66.00 DRAINAGE RATE : .50 FERT. FACTOR :									: .84		
SOYBEAN CULTIVAR : IB0001-BRAGG ECOTYPE : SB0701-MATURITY GROUP 7											
CSDVAR :12.33 PPSEN : .32 EMG-FLW:19.50 FLW-FSD:17.00 FSD-PHM :36.00									0		
WTPSD	.200	SDPDV	R : 2.	05 SD	FDUR :	26.00	PODDUR	:15.00	XFRUIT	: 1.0	0

*SIMULATED CROP AND SOIL STATUS AT MAIN DEVELOPMENT STAGES

RUN NO. 1 Example CROPGRO - Soybean

Ι	DATE	CROP	GROWTH	BI	OMASS	LAI	LEAF	ΕT	RAIN	IRRIG	SWATER	CROP	Ν	STR	ESS
		AGE	STAGE	k	g/ha		NUM.	mm	mm	mm	mm	kg/ha	00	Н2О	N
15	JUN	0	START S	SIM	0	.00	.0	0	0	0	158	0	.0	.00	.00
15	JUN	0	SOWING		0	.00	.0	0	0	0	158	0	.0	.00	.00
21	JUN	б	EMERGEI	NCE	21	.03	.1	3	2	0	157	15	.1	.00	.06
21	JUN	б	END JU	VEN.	21	.03	.1	3	2	0	157	15	.1	.00	.06
28	JUN	13	UNIFOL	IATE	60	.11	1.2	11	10	0	157	35	.1	.00	.26
2	JUL	17	FLOWER	IND	116	.20	2.1	20	10	13	157	54	.3	.03	.32
31	JUL	46	FIRST 1	FLWR	1854	3.25	8.8	128	274	13	186	61 3	.3	.00	.27
22	AUG	68	FIRST 1	POD	4340	5.22	13.9	230	518	26	149	156 3	.6	.00	.01
22	AUG	68	FIRST 1	POD	4340	5.22	13.9	230	518	26	149	156 3	.6	.00	.01
29	AUG	75	END MSI	NODE	5304	5.19	15.4	268	518	63	139	185 3	.5	.00	.00
29	AUG	75	END LEA	AF	5304	5.19	15.4	268	518	63	139	185 3	.5	.00	.00
1	SEP	78	FIRST :	SEED	5710	5.13	15.4	285	518	85	138	196 3	.4	.00	.00
1	OCT	108	END POI	D	7469	3.36	15.4	401	534	165	98	245 3	.3	.13	.01
11	OCT	118	PHYS. I	MAT	7747	2.89	15.4	431	534	180	78	263 3	.4	.32	.07
23	OCT	130	HARV. I	MAT	6107	.19	15.4	448	534	190	69	224 3	.7	.47	.10
23	OCT	130	HARVES	Т	6107	.19	15.4	448	534	190	69	224 3	.7	.47	.10

*MAIN GROWTH AND DEVELOPMENT VARIABLES

@	VARIABLE	PREDICTED	MEASURED
	ANTHESIS DATE (dap)	46	45
	FIRST PEG / POD (dap)	68	67
	FIRST SEED (dap)	78	67
	PHYSIOLOGICAL MATURITY (dap)	118	116
	POD YIELD (kg/ha)	3941	4009.
	SEED YIELD (kg/ha)	2932	3041.
	SHELLING PERCENTAGE (%)	74.41	75.85
	WEIGHT PER SEED (g)	.133	.1440
	SEED NUMBER (SEED/m2)	2202	2223.
	SEEDS/POD	2.05	1.96
	MAXIMUM LAI (m2/m2)	5.25	4.67
	BIOMASS (kg/ha) AT ANTHESIS	1854	-99
	BIOMASS N (kg N/ha) AT ANTHESIS	61	-99
	BIOMASS (kg/ha) AT HARVEST MAT.	6107	6068.
	STALK (kg/ha) AT HARVEST MAT.	2087	1958.
	HARVEST INDEX (kg/kg)	.480	.501
	FINAL LEAF NUMBER (MAIN STEM)	15.41	-99
	SEED N (kg N/ha)	187	-99
	BIOMASS N (kg N/ha)	224	-99
	STALK N (kg N/ha)	20	-99
	SEED N (%)	6.37	-99

DSSAT v3, Volume 2 • DSSAT v3,

Crop Models • Cr

*ENVIRONMENTAL AND STRESS FACTORS

1.0 = Maximum Stress)

SOYBEAN YIEL	D :	2932 kg/ha	[DRY WEIGHT]
--------------	-----	------------	--------------

DSSAT v3, Volume 2 • DSSAT v3,

CHAPTER SIX. DISPLAYING RESULTS

General File Manager

After finishing one or more simulation runs, a user can display simulated results in various formats using the DSSAT v3 General File Manager. In Screen 1, the option following "Simulate" is "Outputs." When this option is chosen, Screen 12 (shown below) is presented, which displays the General File Manager menu for handling the various simulation output files.

General	l File Manager -	MODEL OUTPUTS	Version 1.0
	- Fil	es in Directory: C:\DSSAT3\SOYE	3EAN -
L	FILE NAME	FILE HEADING	
~ ~ ~ ~ ~ ~ ~ ~ ~ ~	CARBON.OUT GROWTH.OUT NITROGEN.OUT OVERVIEW.OUT SUMMARY.OUT WATER.OUT	*GROWTH ASPECTS OUTPUT FILE *NITROGEN BALANCE OUTPUT FILE *SIMULATION OVERVIEW FILE	
F1 - F F2 - 5 F3 - 8 Esc - 9	Institute Listing Site Listing	F4 - Search g F5 - Sort F6 - Print L - Include/Exclude In Sublist	F8 - Edit F9 - Remake List

In Screen 12, the simulation output files are listed. The OVERVIEW.OUT file was discussed in Chapter 5. The file, SUMMARY.OUT, contains a one line summary for each simulation and is mainly used for applications, such as the seasonal and sequence analysis programs discussed in Volumes 3-1 (Thornton et al. 1994 a) and 3-2 (Thornton et al. 1994 b), respectively, of this book. Files GROWTH.OUT, WATER.OUT, NITROGEN.OUT, and CARBON.OUT contain time-dependent

variables as simulated by the crop models. Although these files can be edited, they are normally wider than 80 characters and fairly long, depending upon the number of simulations made by the user. The first 13 variables of each of the listed output files are identical for all crop models, with the first two variables being year-day of year and days after planting. Additional variables can be added as a function of each individual model. For more detailed information, see Volume 2-1 (Jones et al., 1994) of this book.

One of the features of the General File Manager allows the installation of a user's editor. By selecting the Edit option (key < F8>) and positioning the highlight bar over the file name, this output file can be edited. An option for a printout of this output file can also be selected from the editor. The General File Manager includes other options, which are discussed in Volume 1-3 (Hunt et al. 1994) of this book.

The crop models automatically overwrite existing output files. Thus, when a new crop model run is initiated, the old output files are erased and new output files are opened. To keep and save output files, a user can rename the generically-named model output files, or select an option under the Sensitivity Analysis section to store the output files, using a naming convention with Institute and Site code IDs similar to those used for the experiment input file.

GRAPHIC DISPLAY

DSSAT v3 contains a Graphics option, shown in Screen 1. When this option is selected, the graphics display program, Wingraf is run. See Part 3 of this Volume (Volume 2-3, Chan et al. 1994) for a description of this program. Screen 13 (on the following page) displays the first Wingraf screen.

Wingraf allows the user to display the simulated data as a function of day of year or planting date. In addition, field-measured data are included in the graph, when available.

A user can graphically display growth and development variables: (GROWTH.OUT), soil and plant water and weather variables (WATER.OUT), soil and plant nitrogen variables (NITROGEN.OUT), pest and disease variables (PEST.OUT) and carbon balance and photosynthesis variables (CARBON.OUT). By selecting the menu option "User-Selected Variables" displayed in Screen 13, a user can also design a new list of variables by combining variables from previously listed options (see Screens 14 and 15).

E Select Graph Options Exit		
Growth Water Nitrogen Disease & Pests Carbon		
User-Selected Variables		
Summary Validation		
Summary Response		
Fl Help Esc Escape	X-Var.:	Simulation:

SCREEN 13.

For our example, the "Growth" option was selected in Screen 13, which produces a screen with a list of available variables for graphing (see Screen 14).

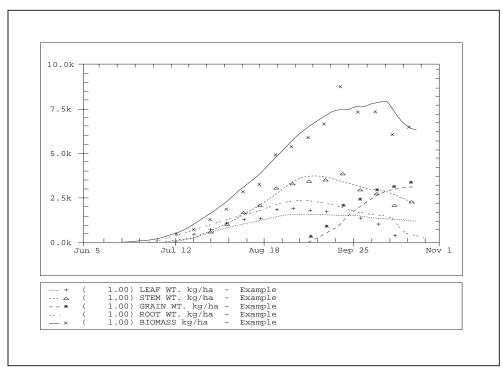
Also in Screen 13, the "Options" menu item can be selected. From the "Options" submenu, a user can set the colors for graph plotting, such as graph background, item and line colors; change the label of the x-axis; choose type of x-y plotting; choose whether or not to have experimental and simulated data plotted; select the number of graph intervals; and the number of tics. More details about setting graph options can be found in Part 3 of this Volume (Volume 2-3, Chan et al. 1994).

I = Select Graph Options Exit [■]	
<pre>Variables [] Leaf number per stem [] Growth stage [] Leaf area index [X] Leaf dry weight (kg/ha) [X] Stem dry weight (kg/ha) [X] Grain dry weight (kg/ha) [X] Root dry weight (kg/ha) [X] Crop dry weight (kg/ha) [X] Crop dry weight (kg/ha) [] Grain number (no/m2) [] Grain dry weight (mg/grain) [] Harvest index (grain/top) [] Pod dry weight (kg/ha) [] Photo water stress factor (0-1) [] Growth water stress factor (0-1)</pre>	Run Numbers [X] Example
Previous Next X Variable	Graph Reset Option

SCREEN 14.

In Screen 14 (above), a user can choose to have displayed up to 6 variable-run combinations. Press the NEXT button on this screen to present another screen (Screen 15, below) displaying additional variables available for graphing.

Variables	Run Numbers
<pre>[] Nitrogen stress factor (0-1) [] Leaf N concentration (%)] Shelling % (seed wt/pod st*100 [] Pod harvest index (pod/top) [] Detached pod dry weight (kg/ha) [] Total pod dry weight (kg/ha) [] Total pod dry weight (kg/ha) [] Canopy height (m) [] Canopy height (m) [] Canopy breadth (m;for 1 row) [] Nodule dry weight (kg/ha) [] Root density, 0-5 cm (cm/cm3) [] Root density, 15-30 cm (cm/cm3) [] Root density, 30-45 cm (cm/cm3)</pre>	
Previous Next X Variable	Graph Reset Option


SCREEN 15.

DSSAT v3, Volume 2 • DSSAT v3,

To select variables for display, click the mouse on a variable or hit the space bar. When all variables have been selected, use either the mouse or the <TAB> key to select the "Run Numbers" option. The default X-Variable is "day of year," but a user can change this to "days after planting" or to another variable with the X-VARIABLE button in Screen 16.

The OPTION button in Screens 14 and 15 is **only** available once a graph has been plotted. Then it can be used to make necessary modifications to the current graph, such as changing the x, y coordinates, modifying the multiplier for each plot, changing the min/max values, turning the graph grid line "On" or "Off" and printing the graph to a hard copy.

Use the <TAB> key or GRAPH button or the <SHIFT><G> keys to display the graph.

Screen 16 shows an example graph with model predicted data depicted as lines and field-measured data as symbols. A detailed description of the Wingraf program can be found in Part 3 of this Volume (Volume 2-3, Chan et al. 1994).

Crop Models • Cr

CHAPTER SEVEN. MANAGEMENT AND SENSITIVITY ANALYSIS OPTIONS

So far only options to simulate either a field or hypothetical experiment have been discussed. In these two cases, the model uses the information provided in the experiment details file, FILEX (Table 4). A user can also interactively modify many of the input variables defined in the input files, including those in the experiment data file, weather file, soil file and genetics file. To do this, select Option 1, "Select Sensitivity Analysis Options," shown in Screen 6 (in Chapter 5). Screen 17, shown below, will be presented.

The user needs to keep in mind that any changes made in the inputs in the screen which follows this one (Screen 18) might cause the model to give different simulation results compared to those derived from field measured data.

Crop Models • Cr

```
MANAGEMENT / SENSITIVITY ANALYSIS OPTIONS
  0. RETURN TO THE MAIN MENU
1. Simulation Timing ..... JUN 15 1978
                   SOYBEAN
                                SBGR0930.SPE SBGR0930.CUL
2. Crop .....
                                MAT : 7 MATURITY GROUP 7
OBSERVED WMOD:N
3. Cultivar .....
                   BRAGG
4. Weather .....
                   UFGA
                   IBSB910015
5. Soil
          . . . . . . . . . . . . .
ROW SP: 91. PLANTS/m2: 29.90
7. Planting .....
10. Nitrogen ..... NOT FERTILIZED
                                N-FIX SIMULAT.
11. Phosphorus .....
                   N/A
SELECTION ? [Default = 0] ===>
```

SCREEN 18.

Screen 18 shows the various categories of variables which can be modified.

SIMULATION TIMING

The "Simulation Timing and Control" menu (Screen 19 on the next page) allows the user to define when a simulation begins. In all cases, the start of simulation date and year (Options 1 and 2) has to be earlier than the planting date, since all model variables are initiated at the start of simulation date. During the period between start of simulation and the planting date only the soil water and nitrogen balances are simulated.

Option 3, "End of Simulation Date," allows the user to determine the last day of simulation, and although this normally should be set in the "Harvest" section, it could be set to "-99" in this menu.

Option 4, "Number of Years to be Simulated," allows the user to specify how many years will be simulated. This is normally set to "1." If, in the example screen shown, the "Number of Years" was set to "2," the model would conduct two simulations, one for 1978, and one for 1979. The user needs to be sure that weather data are available for the years for which the simulations are to be run.

Crop Models • Cr

SCREEN 19.

When Option 5, "Initial Conditions," is selected, Screen 20 (below) is presented.

In Screen 20, a user can define whether the model initiates the variables at the start of each succeeding simulation (Option 1) or if the final conditions from a previous model run are to be used (Option 2). Selecting Option 2 in this screen is useful when simulating crop rotation studies.

Crop

The "Crop Selection and Modification" menu shown in Screen 21 (below) can currently be used only with the grain legume models.

SCREEN 21.

When Option 1, "Crop Selection," is selected is Screen 21, the system checks which crop species files are present and then displays Screen 22 (below).

When Option 2, "Crop Parameter File," is selected in Screen 21, the user can choose a different crop species or parameter file as input. The default crop

DSSAT v3, Volume 2 • DSSAT v3,

species file is "??GRO940.SPE," where ?? is either SB for soybean, PN for peanut, or BN for dry bean.

In Screen 22, the user can choose to change the crop to one of those listed.

CULTIVAR

The "Cultivar Selection and Modification" menu shown in Screen 23 (below) allows the user to modify inputs related to the cultivar.

SCREEN 23.

When Option 1, "Cultivar Selection," is selected, Screen 24 (on following page) is presented.

Option 2, "Cultivar Parameter File," allows the user to choose an alternate parameter file as input.

When Option 3, "Cultivar Parameter Modification" is selected, Screen 25 (on following page) is presented.

Option 4, "Ecotype Selection," is applicable only for the grain legume models, which use an ecotype file to represent the variables that are used to define a group of cultivars with the same growth and development characteristics. In Chapter 5, "New Crop Model Features," more information on the ecotype file is presented.

				VARIETY	SELECTION	
NO.	ENTRY	VARIETY			ECOTYPE GROUP	MATURITY GROUP
1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15)	$\begin{array}{c}\\ 9 & 9 & 0 & 0 & 0 & 1 \\ 9 & 9 & 0 & 0 & 0 & 0 & 3 \\ 1 & B & 0 & 0 & 0 & 3 \\ 9 & 9 & 0 & 0 & 0 & 4 \\ 9 & 9 & 0 & 0 & 0 & 6 \\ 9 & 9 & 0 & 0 & 0 & 0 & 6 \\ 9 & 9 & 0 & 0 & 0 & 0 & 0 \\ 9 & 9 & 0 & 0 & 0 & 0 & 0 \\ 9 & 9 & 0 & 0 & 1 & 0 \\ 9 & 9 & 0 & 0 & 1 & 1 \\ 9 & 9 & 0 & 0 & 1 & 2 \\ 9 & 9 & 0 & 0 & 1 & 1 \\ 9 & 9 & 0 & 0 & 1 & 2 \\ 9 & 9 & 0 & 0 & 1 & 3 \\ U & C & 0 & 0 & 0 & 1 \end{array}$	M GROUP M GROUP	1 2 3 4 5 6 7 8 9 10 000 000 000 000		SB0101 SB0201 SB0301 SB0301 SB0401 SB0501 SB0601 SB0701 SB0801 SB1001 SB0001 SB0001 SB0001	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 2 \\ 0 \\ 3 \\ 0 \\ 4 \\ 0 \\ 5 \\ 0 \\ 6 \\ 0 \\ 7 \\ 0 \\ 8 \\ 0 \\ 9 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$
Моз	re p	ress < EN	TER > k	ey		
16) 17) 18) 19) 20) 21) 22)	IB0001 IB0043 IB0002 IB0060 UC0002 UC0003 IB0003	BRAGG CLARK COBB CUMBERLA MAPLE AF MCCALL WAYNE			SB0701 SB0502 SB0801 INDETE SB0001 SB0001 OB0301	0 7 0 5 0 8 D E 0 0 0 0 0 0 0 3
		SELECTE LECTION ?		16		

SCREEN 24.

In Screen 24, the user can choose an alternate cultivar from the one defined in FILEX. For this example, variety number 16, "Bragg," is the default cultivar. A user can select any variety or cultivar by entering one of the numbers from the first column.

SCREEN 25.

In Screen 25, the user can modify all parameters which are defined in the cultivar file. This example screen displays the coefficients for the soybean cultivar "Bragg."

DSSAT v3, Volume 2 • DSSAT v3,

WEATHER

The "Weather Data Selection and Modification" menu allows the user to select and modify input variables related to the weather conditions (Screen 26, below).

SCREEN 26.

In Screen 26, Option 1, "Recorded/Simulated Data," allows the user to define if either measured/observed weather data or generated weather data are to be used. In the case of generated data, the model generates these data internally through one of two weather generators that are part of the models, or by reading data from files which contain generated weather data (see Screen 27, on following page).

When Option 2, "Weather Data Selection," is selected, Screen 28 (on following page) is presented.

Option 3, "Weather Data Path," allows the user to define an alternate path where weather data files are located.

Option 4, "Enter Weather File Name Interactive," allows the user to enter an alternate file name. A user must be certain that this file exists; otherwise the model will not be able to simulate the selected management conditions. If a different weather year is selected, the system will modify all date-related inputs to the year selected.

Option 5, "Weather Data Modification," allows the user to interactively modify the weather variables by either adding or subtracting a constant number, multiplying one or more weather variables by a constant number, or setting one or more variables as constant. If 'Y' is selected for this Option, Screen 29 (on following page) is presented.

SCREEN 27.

	WEATHER LOCATIONS	LAT.	LONG	ELEV	YEAR	DATA SET
13) 14)	CIAT, PALMIRA, COLOMBIA SUPHEN_BURI, THAILAND CNPAF, GOIANIA, BRAZIL ICTA, QUEZADA, GUATEMALA IRRI, MUNOZ, PHILIPPINES IRRI, MUNOZ, PHILIPPINES IRRI, PILA, PHILIPPINES IRRI, PILA, PHILIPPINES IRRI, PILA, PHILIPPINES	$\begin{array}{c} 3.500\\ 14.500\\ -16.300\\ 15.700\\ 15.700\\ 15.700\\ 14.200\\ 14.200\\ 14.200\\ 14.200\\ 42.200\\ 39.000\\ -3.300 \end{array}$	-76.400 100.100 -49.100 -90.000 120.900 121.300 121.300 -93.700 30.000	-99. -99. 10. 10.	1986 1987 1985 1987 1989 1985 1986 1986 1986 1986 1979 1981 1986 1976 1978	CCPA8601.WTH CCPA8701.WTH DTSP8501.WTH EBG08701.WTH IGQU8901.WTH IRMZ8501.WTH IPPI8001.WTH IPPI8001.WTH IPPI8501.WTH IPPI8601.WTH IUCH7901.WTH KSAS8101.WTH UFGA7601.WTH
16) 17) 18) 19) 20) 21) 22) 23)	GAINESVILLE, FLORIDA, USA GAINESVILLE, FLORIDA, USA GAINESVILLE, FLORIDA, USA GAINESVILLE, FLORIDA, USA GAINESVILLE, FLORIDA, USA GAINESVILLE, FLORIDA, USA	29.600 29.600 29.600 29.600 29.600 29.600 29.600 30.600		10. 10. 10. 10.	1979 1980 1981 1982 1984 1985 1986 1979	UFGA7901.WTH UFGA8001.WTH UFGA8101.WTH UFGA8201.WTH UFGA8401.WTH UFGA8501.WTH UFGA8601.WTH UFQU7901.WTH

SCREEN 28.

DSSAT v3, Volume 2 • DSSAT v3,

Screen 28 (on preceding page) allows the user to select an alternate weather file as input. The screen displays a listing of the weather data locations available for this example's disk path. For this example, weather data from Gainesville, Florida, collected during 1978 (UFGA7801.WTH) are used (i.e., the number "15" was selected in Screen 28 and is presented next to Option 2 in Screen 26).

```
SELECT/REVISE WEATHER VARIABLES:
RETURN
                         OFFSET MULT. VALUE
()
   Photoperiod (Day length) .00
1)
                                  1.00
   Solar Radiation
2)
                             .00
                                   1.00
                            .00
3)
   Maximum Temperature
                                  1.00
                            .00
4)
   Minimum Temperature
                                  1.00
   Rainfall
5)
                                   1.00
                             .00
6)
                                  1.00 330.00
  Carbon Dioxide
  Humidity (dew point)
Wind speed
                            .00
7)
                                  1.00
8)
                             .00
                                   1.00
Relative adjustments of CO2 from a base value of
                                                330. ppm.
PFD and Solar Radiation automatically changed together.
CHOICE ? < Default = 0 > ===>
```


Screen 29 shows an overview of the weather variables which can be modified. In this example screen, the CO_2 concentration is set to 330 ppm, while none of the other variables are modified. When one of the variables is selected by its corresponding option number, Screen 30 (on following page) is presented.

```
Select modification option, then enter amount:
0) NO CHANGE ( ambient conditions )
1) Additive Change ( 3.0 = 3 higher )
2) Subtractive Change ( 3.0 = 3 lower )
3) Multiplicative Change ( 1.2 = 20% higher )
4) Constant Value ( 100 = constant of 100 )
<=== CHOICE? < Default = 0 >
```


Screen 30 allows the user to choose one of the modification options listed in order to revise or alter the weather variable selected in Screen 29 (on preceding page).

Soil

The "Soil Profile Selection and Modification" menu allows the user to modify input variables related to the soil profile characteristics (Screen 31, below).

DSSAT v3, Volume 2 • DSSAT v3,

In Screen 31, Option 1, "Soil Profile Selection," allows the user to select an alternate soil profile as input. If this option is selected, Screen 32 (on following page) is presented. As can be seen in Screen 31, pedon number IBSB910015 "Millhopper Fine Sand" was selected from Screen 32. When an alternate soil profile is selected as input from that first presented in Screen 31, the user will be requested to redefine the initial soil conditions, because for many soils the initial conditions are soil profile specific (see Screen 34).

Option 2, "Soil Profile File" in Screen 31, allows the user to define an institute soil file as an alternate soil input file. For this example experiment, the institute is the University of Florida. Therefore the alternate soil file would be UF.SOL.

Option 3, "Soil Profile Path," allows the user to define an alternate directory path for the soil file.

Option 4, "Soil Profile Layer Thickness," allows the user to modify the thickness of each soil profile layer. If this option is selected, Screen 33 (on following page) is presented.

Option 5, "Soil Profile Parameters," allows the user to modify the input values for the most important soil profile parameters. These include the drained upper limit, lower limit of plant extractable soil water, saturated water content, initial soil water content, bulk density, pH, soil organic carbon content, and rooting characteristics. If this option is selected, Screen 34 is presented.

Option 6, "Soil Surface Parameters," allows the user to modify the input values for the most important soil surface characteristics. These include soil albedo, first stage evaporation limit, runoff curve number, drainage rate, nitrogen mineralization factor, and growth reduction or fertility factor, which is only implemented in the grain legume models. If this option is selected, Screen 35 is presented.

```
SOILS IN THE DATA BASE
REF
                       NO. TAXONOMY NAME
                                                                    SOIL NUMBER
                 -----
1) Millhopper Fine Sand
                                                                    IBSB910015
                                                                    IBSB910017
 2) Orangeburg Sandy Loam
 3) Ida Silt Loam
                                                                    IBSB910026

    4) Millhopper Fine Sand
    5) Millhopper Fine Sand

                                                                    IBPN910015
                                                                    IBMZ910014
 6) Haynie
                                                                    TBWH910018
 7) M3
                                                                    IBBN910030
8) San-Fernando9) Millhopper Fine Sand
                                                                    IBBN910038
                                                                    TBBN910015
10) UNKNOWN
                                                                    GAPN930001
11) ANDAQUEPTIC HAPLAQUOLL
                                                                    IBRI910001
12) VERTIC TROPAQUEPT
                                                                    IBRI910002
13)
                                                                    IBRI910063
14)
                                                                    IBRI910071
    SELECTED SOIL TYPE ===> 1
NEW SELECTION ? --->
```

SCREEN 32.

Screen 32 shows a listing of some of the soil profiles available. More information on how to modify the initial conditions is described in the next section, "Initial Conditions," in this Chapter.

```
LAYER DEPTH MODIFICATION
  0)
   RETURN TO THE MAIN MENU
1)
      .00
         -
             5.00....]
                             5.00
                                 сm
2)
     5.00
             15.00....]
                            10.00
         _
                                  сm
3)
    15.00
         _
             30.00....]
                            15.00
                                  сm
4)
    30.00
         _
             45.00....]
                            15.00
                                 сm
5)
             60.00....]
    45.00
          _
                            15.00
                                 сm
6)
    60.00
             90.00....]
         _
                            30.00 cm
    90.00 - 120.00....]
7)
                            30.00 cm
8)
   120.00 - 150.00....]
                            30.00
                                 сm
9)
   150.00
            180.00....]
                            30.00
          _
                                  сm
   SELECTION ? [ Default = 0 ] ===>
```


DSSAT v3, Volume 2 • DSSAT v3,

Crop Models • Cr

SCREEN 34.

```
SOIL SURFACE PARAMETERS
  ------
0. Return to Previous Menu
1. Soil Albedo ....
                                   .180
                 . . . . . . . . . . . . . . . ]
2. Evaporation Limit .....]
                                  5.000
3. Runoff Curve Number .....] 66.000
4. Drainage Rate .....]
                                   .500
5. Mineralization Factor .....]
                                  1.000
                                   .840
6. Growth Reduction/Fertility Fac.]
  SELECTION (#) ? [ Default = 0 ] --->
```


DSSAT v3, Volume 2 • DSSA

Initial Conditions

The "Initial Conditions at Start of Simulation" menu allows the user to modify the input variables used to initialize the crop model when a simulation is started (Screen 36, below).

In Screen 36, Options 1, 2 and 3, "Initial Soil Water Content," "Initial Soil NO3" and "Initial Soil NH4," respectively, allow the user to modify these variables for each layer. If Option 1 is selected, Screen 37 (on following page) is presented.

Option 4, "Growth Reduction Factor Due to Poor Soil Fertility," is used only in the grain legume models to adjust biomass growth for conditions which are currently not included in the crop process simulations.

Options 5, 6 and 7, "Root Weight from Previous Crop," "Nodule Weight from Previous Crop" and "Previous Crop," respectively, relate to crop residues remaining from previous crop and which are present at planting of the current crop. This information is needed when the soil nitrogen balance is simulated.

Crop Models • Cr

```
INITIAL SOIL WATER CONTENT
 0) RETURN TO THE MAIN MENU
                             .0860
                                    cm3/cm3
cm3/cm3
          5. cm .....]
1)
    0. –
2)
   5. -
         15. cm .....]
                              .0860
                              .0860
                                    cm3/cm3
3)
  15. -
         30. cm .....]
  30. -
                                    cm3/cm3
4)
        45. cm .....]
                              .0860
  45. -
                              .0860
5)
        60. cm .....]
                                    cm3/cm3
6) 60. -
                             .0760 cm3/cm3
        90. cm .....]
7) 90. - 120. cm .....]
                             .0760
                                    cm3/cm3
8) 120. - 150. cm .....]
9) 150. - 180. cm .....]
                             .1300
                                     cm3/cm3
                              .2580
                                     cm3/cm3
 SELECTION ? [ Default = 0 ] --->
```

SCREEN 37.

Screen 37 displays the variables which can be changed if Option 1, "Initial Soil Water Content" in Screen 36, is selected.

PLANTING

The "Planting Timing and Control" menu allows the user to define the conditions at planting (Screen 38, below).

```
PLANTING TIMING AND CONTROL
  0. Return to Main Menu
                                 JUN 15
1. Planting Date .....]
2. Year of Planting .....]
                                   1978
                                  29.900
3. Plant Population .....]
                                 91.000
4. Row Spacing .....]
5. Row Direction .....]
                                   .000
6. Planting Depth .....]
                                  4.000
7. Planting Material Dry Weight .....]
                                 -99.000
8. Planting Method .....]
                                SEED
9. Planting Management .....]
                               ON REPORTED DATE
10. Automatic Planting Options .....
  SELECTION (#) ? [ Default = 0 ] --->
```

SCREEN 38.

In Screen 38, Options 1 and 2, "Planting Date" and "Planting Year," respectively, allow the user to modify the planting date and year.

Options 3 and 4, "Plant Population" and "Row Spacing," respectively, allow the user to define plant density, row spacing and plant spacing.

Option 5, "Row Direction," is used only in the grain legume models to define light interception for the simulated leaf level photosynthesis processes.

Option 6, "Planting Depth," affects germination and emergence.

Option 7, "Planting Material Dry Weight," allows the user to define the initial weight of the root crops at planting.

Option 8, "Planting Method," allows the user to define planting method, strategy (e.g., seed, transplant, etc.)

Option 9, "Planting Management," allows the user to define when planting occurs; either at the specified date in Option 1 or 2 or through an automatic planting routine (Option 10).

Option 10, "Automatic Planting Options," allows the user to define a window for soil water and temperature which determine when soil conditions in the top of the profile are optimum for germination (see Screen 39, below). Delineation of soil water and temperature, within which planting can occur, can also be specified in Screen 39. It is important that the earliest planting date, defined in Screen 39, be a date after the start of simulation date, as defined in Screen 19.

SCREEN 39.

HARVEST

The "Harvest Timing and Control" menu allows the user to define the conditions for crop harvesting. The default for harvest is when the crop reaches harvest maturity, as shown in Screen 40 (below).

```
HARVEST TIMING AND CONTROL
  0. Return to Main Menu
                                 AT HARVEST MATURITY
                                   -9 -9
1. Harvest Management .....]
2. Harvest Date .....]
3. Harvest Days after Planting .....]
                                _9
4. Harvest Stage .....]
                                Harvest
5. Harvest Component .....]
6. Harvest Size Group .....]
7. Harvest Percentage .....]
                                100.
8. Automatic Harvest Options .....
  SELECTION (#) ? [ Default = 0 ] --->
```

SCREEN 40.

In Screen 40, Option 1, "Harvest Management," allows the user to define various management options. If this option is selected, Screen 41 (on following page) is presented.

Option 2, "Harvest Date," is active only when, in Screen 41, the user selects Option 2, "On Reported Date(s)." Then, Screen 40 is presented again and the user can select Option 2 and enter the harvest date.

Option 3, "Harvest Date After Planting," is active only when, in Screen 41, the user selects Option 3, "On Reported Days After Planting." Then, Screen 40 is presented again and the user can select Option 3 and enter the number of days after planting for the harvest date.

Option 4, "Harvest Stage," allows the user to select the phenological or development stage at which to harvest the crop and terminate the simulation.

Options 5, 6 and 7, "Harvest Component," "Harvest Size Group" and Harvest

Percentage," respectively, presented in this screen, are in the process of being developed. An option for "Multiple Harvests" is also under development.

When Option 8, "Automatic Harvest Options," is selected, Screen 42 (on following page) is presented, which allows the user to select conditions for harvest.

SCREEN 41.

Screen 41 allows the user to define various harvest management options. These include harvest at crop harvest maturity (Option 1 and the default for Option 1 in Screen 40); harvest on reported date (Option 2) or fixed day (Option 3); harvest at a particular developmental stage (Option 4); and an automatic harvest as a function of a set of crop and environmental conditions (Option 5).

SCREEN 42.

Screen 42 shows the various conditions which can be set when the automatic harvest management option is selected in Screen 40.

WATER AND IRRIGATION

The "Water and Irrigation Management and Modification" menu allows the user to modify the various options and variables associated with the water balance simulation and irrigation applications (Screen 43, below).

Option 1, "Water Balance Simulation" in Screen 43 (on preceding page), allows the user to turn the water balance simulation on or off.

Option 2, "Irrigation Management," allows the user to define the various irrigation management options, and when selected, Screen 44 (below) is presented.

Options 3 and 4, "Automatic Irrigation Control" and "Automatic Irrigation -Fixed Amount," respectively, allow the user to define the automatic irrigation controls explained earlier. These two options can be modified only when an automatic irrigation strategy has been selected under Option 2.

Option 5, "Irrigation Efficiency," allows the user to determine how much water is actually applied. For example, for furrow irrigation or sprinkler irrigation not all water measured in the supplying pipes is actually applied to the field or plot.

Option 6, "Enter Irrigation Interactive," can only be accessed when, under Option 2, "Irrigation Management," the user selects "According to Field Schedule" (see example in Screen 43). When Option 6 is selected, Screen 45 is presented.

Option 7, "Water Output File," allows the user to either switch the soil and plant water output file on or off.

SCREEN 44.

In Screen 44, the user can select either rainfed with no supplemental irrigation (Option 1) or irrigate according to the field schedule (Option 2). In the latter case,

the irrigation data must be in FILEX. There are also two automatic irrigation options: Options 3 and 4.

Option 3 selects to refill the selected profile depth to the drained upper limit or field capacity.

Option 4 applies a fixed amount each time the system calls for an irrigation event. Both automatic irrigation events are controlled by a soil depth and a threshold value for extractable water, which can both be defined by the user.

Option 5, "No Water Stress/No Water Balance Simulation," allows the user to choose not to simulate the soil water balance, which is the same as setting the water balance simulation to 'N' in Screen 43.

#	Date	Amount (mm)	Irrigation Type
16	78272	8.0	Furrow, mm
17	78279	8.0	Furrow, mm
18	78283	8.0	Furrow, mm
19	78294	10.0	Furrow, mm

Screen 45 is an example screen listing the options available for adding irrigation interactively. In this screen, a user can either edit, add, or delete an irrigation event.

Nitrogen

The "Nitrogen Management and Modification" menu allows the user to modify variables and options associated with the soil nitrogen simulation (Screen 46, below).

SCREEN 46.

Option 1, "Nitrogen Balance Simulation," allows the user to turn the soil nitrogen balance simulation on or off. Note that the water balance simulation must be set to 'Y' to simulate the soil nitrogen balance.

Option 2, "N-Fertilizer Management," allows the user to define the various nitrogen fertilizer management options. When this option is selected, Screen 47 (on following page) is presented.

Option 3 in Screen 48, "Automatic Fertilizer Management," can only be accessed if Option 3, "Automatic N-Fertilizer Application" in Screen 47, is selected. When Option 3 in Screen 47 is selected, Screen 48 is presented. The user makes his selection(s) in Screen 48 and a 'Y' is placed next to Option 3 in Screen 46.

Option 4, "Enter N-Fertilizer Interactive," can only be accessed if Option 2, "Apply N-Fertilizer According to Field Schedule" in Screen 47, is selected. The screen which defines interactive N-fertilizer applications is not shown, but is similar to the screen for irrigation management (Screen 45, on preceding page). Options 5 and 6, "Nitrogen Fixation" and "Nitrogen Fixation Characteristics,", respectively, are only applicable for the grain legume models. When Option 5 is selected, Screen 49 is presented. When Option 6 is selected, Screen 50 is presented.

Option 7, "Nitrogen Output File," allows the user to either switch the soil and plant nitrogen output file on or off.

In Screen 47 (above), the user can select Option 1, "Not Fertilized," with no supplemental nitrogen fertilizer applied, or Option 2, "Fertilize According to the Field Schedule."

In the latter case, the nitrogen fertilizer data must be in FILEX. Please note that Option 4 in Screen 46, "Enter N-Fertilizer Interactive" can only be accessed if Option 2 in Screen 47 is selected. (See Option 4 for screen 46.)

Option 3 allows "Automatic Nitrogen Fertilizer Application" as a function of pre-set conditions. Please note that Option 3 in screen 46, "Automatic Fertilizer Management," can only be accessed if Option 3 in this screen is selected. (See Option 3 for Screen 46.) When Option 3 in Screen 46 is selected, Screen 48 (on following page) is presented.

Option 4 in Screen 47 allows the user to choose not to simulate the soil nitrogen balance, which is the same as setting Option 1 to 'N' in Screen 46.

SCREEN 48.

Screen 48 shows the various threshold levels which can be set for automatic nitrogen fertilizer applications. In this screen, the threshold value (Option 1) uses a nitrogen factor expressed on a relative basis between 0 and 100 percent, where "0" means that the plants are under complete nitrogen stress and "100" means that the plants are under no nitrogen stress.

Options 2, 3 and 4 allow the user to define the amount of nitrogen fertilizer to be applied, the application depth, and the type of nitrogen fertilizer, respectively, when the crop model calls for a nitrogen fertilizer application, as selected under the threshold level of Option 1.

SCREEN 49.

Screen 49 (above) shows the nitrogen fixation variables available when Option 5 in Screen 46 is selected. Please note that Option 5 in Screen 46 is available only for the grain legume models (soybean, peanut and drybean).

In Screen 49, Option 1, "No Nitrogen Fixation Simulation," allows the user to simulate a complete soil and plant nitrogen balance. However, plants will not fix nitrogen, which is similar to non-nodulating cultivars.

Option 2, "Dynamic Nitrogen Fixation Simulation," allows the user to simulate both a dynamic nitrogen uptake and nitrogen fixation as a function of soil and weather conditions.

Option 3, "Unlimited Nitrogen Fixation Simulation," allows the user to simulate a dynamic nitrogen uptake and assumes that the remainder of the nitrogen required for growth is available via N fixation.

SCREEN 50.

Screen 50 shows the nitrogen fixation characteristics which can be modified when Option 6 in Screen 46 is selected.

In Screen 50, Option 1, "Rhizobia Effectiveness," is a relative number between 0 and 1. An effectiveness of "1" means that the rhizobia are completely active with respect to nitrogen fixation.

Option 2, "Rhizobia Number," is also a relative number (0 to 1) which allows the user to determine the initial amount of rhizobia present at the start of simulation.

PHOSPHORUS

The "Phosphorus Management and Modification" menu is under development and is not available for the current DSSAT v3 crop models.

Residue

The "Crop Residue Management at Start of Simulation" menu allows the user to modify variables related to crop residue at the start of simulation (Screen 51, below).

```
CROP RESIDUE MANAGEMENT AT START OF SIMULATION
    0. Return to Main Menu
1. Residue Application Date .....]
                                           78166
2. Residue Applied at Start of Simulation .....]
                                           1000.0 kg/ha
                                           .80 %
3. Residue Nitrogen Concentration .....]
4. Residue Phosphorus Concentration .....]
                                             .00 %
5. Residue Incorporation .....]
                                           100.00 %
6. Residue Incorporation Depth .....]
                                           15.0 cm
7. Residue Material Code .....]
                                           IB001
                                           100.00 kg/ha
8. Root Weight from Previous Crop .....]
9. Nodule Weight from Previous Crop .....]
                                           .00 kg/ha
10. Previous Crop .....]
                                             SB
  SELECTION (#) ? [ Default = 0 ] --->
```


In Screen 51, Option 1, "Residue Application Date," uses the same date as the start of simulation date.

Options 2, 3, 4, 5 and 6 allow the user to define, respectively, the amount of residue applied, its nitrogen and phosphorus concentration, the amount of residue incorporated into the soil, and the incorporation depth.

Options 8 and 9, "Root Weight from Previous Crop" and "Nodule Weight from Previous Crop," respectively, allows the user to enter these values. Please note that the program assumes that all below ground material from a previous crop remains in the soil.

Option 10 allows the user to define the crop grown previously (e.g., the crop grown before the current crop).

Pest And Disease

The "Pest and Disease Selection and Modification" menu is currently available only in the grain legume models (Screen 52, below).

SCREEN 52.

In Screen 52, Option 1, "Pest & Disease Simulation," allows the user to turn the pest and disease simulation on or off.

Option 2, "Enter Pest Population or Damage," is not currently available. Information on how to manually edit or create a pest population or crop damage can be found in Appendix C herein.

Option 3, "Pest Output File," allows the user to switch the pest output file on or off.

Crop Models • Cr

CROP PROCESS OPTIONS

The "Simulation Control and Modification" menu allows the user to control various internal process simulations of the models (Screen 53, below).

SCREEN 53.

In Screen 53, Options 1, 2, 3, 4, 5, 6 and 7 can be modified in their respective menus. For example, the options for the Water Balance simulation (Option 1) and Nitrogen Balance simulation (Option 2), can be found in the "Water and Irrigation" and "Nitrogen" sections, respectively, of this Chapter. Please note that Options 3, 5 and 8 are crop model or species specific.

Output Control

The "Output File Options and Controls" menu allows the user to switch each output file (Options 2-9 in Screen 54, below) on or off.

```
OUTPUT FILE OPTIONS AND CONTROLS
      _____
0. Return to Main Menu
1. Video Output .....
Υ
                                      Υ
4. Growth Output File .....
                                      Υ
5. Carbon Balance Output File .....
                                      Υ
Υ
                                      Υ
8. Mineral Nutrients Output File .....
                                      Ν
9. Pest Output File .....
10. Frequency of Simulation Output (in days).....
                                      Y
                                      3
11. Save Output Files with Experiment Code .....
                                      Ν
12. Write Output Files with Long Format .....
                                      Y
  SELECTION ? [ Default = 0 ] ===>
```


In Screen 54, Option 1, "Video Output," allows the user to control the model output to the computer screen or monitor. Only the "I", "Interactive Option," will actually display output on the computer screen. "I" is the default for Option 1.

When a "1" is entered (that is, the <1> key and then the <ENTER> key are pressed), indicating that NO video output is required, this menu screen will immediately go blank and all screen writes will be eliminated. If the user wishes to select this option (i.e., have no screen display), but also wishes to select any of the other options, it is recommended that the user first enter those options and then select Option 1. Otherwise, although other options in this screen can be selected after entering "1," the user will not see the menu and will have to work from memory.

Once a "1" is entered, press the <ENTER> key twice. A dialog box will be presented in which the user can enter a "run name" for the simulation. Press the <ENTER> key again. Simulation will begin, but nothing will be seen on the screen during the simulation. When simulation is completed, a message will be displayed on the screen informing the user of this. **NOTE:** If you select Option 1 and enter an "1," but wish to see this menu screen again, simply press "1" again. However, enter the second "1" BEFORE pressing the <ENTER> key twice, because after that is done, this screen cannot be refreshed.

Option 2, "Overview Output File," allows the user to control the output file, OVERVIEW.OUT.

Option 3, "Summary Output File," allows the user to control the output file, SUMMARY.OUT. A 'Y' selection for this file will erase the file from the previous run and will create a new output file; an 'A' selection for this file will append the outputs of the current simulation to the already existing SUMMARY.OUT file and no headers will be written. A 'N' will cause this file not to be created.

Option 4, "Growth Output File," allows the user to control the output file, GROWTH.OUT.

Option 5, "Carbon Balance Output File," allows the user to control the output file, CARBON.OUT.

Option 6, "Water Balance Output File," controls the output file, WATER.OUT.

Option 7, "Nitrogen Balance Output File," allows the user to control the output file, NITROGEN.OUT.

Option 8, "Mineral Nutrients Output File," is not yet operational and will be implemented later to control the output file, PHOSPHOR.OUT.

Option 9, "Pest Output File," allows the user to control the output file, PEST.OUT. Please note that this option is available only in the grain legume models.

Option 10, "Frequency of Simulation Output," allows the user to control the output interval, in days, for those output files which contain time-series data, such as GROWTH.OUT, WATER.OUT, CARBON.OUT, NITROGEN.OUT, PHOSPHOR.OUT and PEST.OUT.

Option 11, "Save Output Files with Experiment Code," allows the user to save the files using the same file name as FILEX for that experiment, except for its last character, which must be a G, W, N, C, P or D, for growth, water, nitrogen, carbon, phosphorus, and pests and diseases, respectively. The default setting for Option 11 is 'N'.

Option 12, "Write Output Files with Long Format," writes the output file with additional variables besides the standard variables used for each model. Screens 14 and 15 in the "Graphic Display" section of Chapter 6 give an indication of some of the additional variables which are stored in file GROWTH.OUT if the long format is selected for the output files.

CHAPTER EIGHT. PROBLEMS AND ERROR MESSAGES

Many types of personal micro-computers are available and it has not been possible to test the DSSAT v3 simulation models on all possible systems, hardware configurations or operating systems. System requirements to run DSSAT v3 and its crop models can be found in Chapter 2 of Volume 1-1 (Tsuji et al. 1994) of this book. A listing of important error messages is given in Table 7.

Some common problems which may occur:

- 1. One of the three required executable files, MDRIV940.EXE, MINPT940.EXE and one of the crop simulation modules, is missing.
- 2. The three required executable files are not located in the same directory.
- 3. The model is being run from a data directory rather than from the crop model data directory.
- 4. One of the input files is missing. Required files are :
 - EXP.LST use the file manager in DSSAT v3 to recreate this file;
 - The experiment selected during the model run. Look for a file with an X extension, i.e., ???????.CRX, where ??????? includes the Institute code, Site code, year and experiment number and CR is the crop code, e.g., UFGA7801.SBX. The ???????.CRX should also be included in the EXP.LST file. This file can be created or edited with the XCreate program (see Volume 1-4, Imamura 1994, of this book) or added to the EXP.LST with the General File Manager (see Chapter 6 herein).
 - The cultivar file. This file is normally located either in the crop data directory or in the genotype directory of DSSAT v3 (C:\DSSAT3\GENOTYPE). The file name has the CUL extension, using the file name convention ??????.CUL, where ??????? is the crop model name and version, e.g., SBGRO940.CUL.
 - The ecotype file. This file is normally located either in the crop data directory or in the genotype directory of DSSAT v3 (C:\DSSAT3\GENOTYPE). The file name has the ECO extension, using the file name convention ??????.ECO, where ??????? is the crop model name and version e.g., SBGRO940.ECO.
 - The crop species file. This file is normally located either in the crop data directory or the genotype directory of DSSAT v3 (C:\DSSAT3\GENOTYPE). The file name has the SPE extension, using the file naming convention ??????.SPE, where ???????? is the crop model name and version, e.g., SBGRO940.SPE.
 - The soil file. This file is normally located either in the crop data directory or in the soil data directory of DSSAT v3 (C:\DSSAT3\SOIL). Look for a file with the SOL extension. The general soil file name used in the crop models is SOIL.SOL.

- The weather file. This file is normally located either in the crop data directory or in the weather data directory of DSSAT v3 (C:\DSSAT3\WEATHER). Look for a file with the WTH extension, using the file name convention ???????.WTH, where ???????? includes the institute code, site code, and year, e.g., UFGA7801.WTH.
- The crop species in the *CULTIVAR section of FILEX is wrong. Check the code under "CR" in the *CULTIVAR section.
- The cultivar specified in the *CULTIVAR section is wrong or not included in the genotype file of the model. Check the code under INGENO in the *CULTIVAR sec tion of FILEX. Also check the genotype file ??????.CUL. If thecultivar is currently not included in this file, use the genotype calculator program to add this cultivar to the cultivar list and to estimate the initial values for all genetic coefficients.
- The weather station specified in the *FIELDS section is wrong or the file is not included in either the model data directory or weather data directory. Check the code under WSTA in the *FIELDS section of FILEX.
- The soil profile identified in the *FIELDS section is wrong or the soil profile is not part of the soil file SOIL.SOL. Check the section under ID_SOIL in the *FIELDS section of FILEX.

Required model input data are explained in detail in Volume 2-1 (Jones et al., 1994) of this book, and example files are included with the required variables highlighted for the various options available for simulation.

The input section of the model includes detailed error checking routines. The most common error messages are listed in Table 7. These messages include the subroutine and the input file in which the error occurred, and in some cases also the line number of the input file. These messages also give you some information about the type of error which occurred. In many cases these errors can be corrected by editing FILEX using either the XCreate program (see Volume 1-4, Imamura 1994, of this book) or any other ASCII text editor.

There might be cases where the model gives a runtime error. These errors could either be due to a problem with the input file, such as a "0" where the model expects a number > 0, or other problems. However, in some cases, these errors can be caused by a combination of inputs which we have been unable to test during model development. If this happens, please make sure that your error is reproducible; that is, you can recreate the same error and error message using the same combination of inputs and input files, and model version number and contact one of the model developers, a listing of whom can be found in Appendix D.

TABLE 7.IMPORTANT ERROR MESSAGES.

AUTFER Error in Fertilizer Sensitivity Analysis Selection. Fix entry or batch file. AUTIRR Error in Irrigation Sensitivity Analysis Selection. Fix entry or batch file. CROPGR Incompatible input file format. CROPGR Planting date is before start of simulation date. Please fix input file. MRUN Specified weather data files not available. Please create files. TDWTH Error in Weather Sensitivity Selection entry. Fix entry or batch file. IDWTH End of File in Weather Sensitivity Selection entry. Fix entry or batch file. INPUT Error in Selection entry. Fix entry or batch file. INPUT Planting Date is Before Start of Simulation. Please Fix Input File. IPCROP 1 Error in Crop Parameter Input File. End of File Reached. TPECO Error in Ecotype entry. Fix entry or batch file. TPECO Error in Ecotype entry. Fix ecotype input file. TPECO DEFAULT Ecotype not found. Fix ecotype input file. TPECO 21 Ecotype input section not found. Please correct file. IPENV Incorrect format in environmental section. Check format. TPEXP Treatment input section not found. Please add to input file. IPEXP Error in Experiment Selection entry. Fix entry or batch file. TPEXP Error in Treatment Selection entry. Fix entry or batch file. IPEXP Simulation must begin on or before the planting date. Correct dates. TPEXP Error in crop input. Correct input file.

TPEXP 11 Error in cultivar input. Correct input file. 20 TPEXP You selected a crop which can not be simulated by this model. Please ReExecute. TPEXP Experiment list input section not found. Please correct file. TPEXP 2.2 Incorrect weather method option selected. Please correct file. IPFERT 1 Fertilizer input section not found. Please add to input file. TPFFRT Error in fertilizer inputs. Check format. TPFERT 10 Error in date of fertilizer application input. Correct input file. IPFERT 11 Error in depth of fertilizer application input. Correct input file. TPFFRT 12 Error in amount of N-fertilizer input. Correct input file. IPFERT 13 Error in amount of P-fertilizer input. Correct input file. TPFERT 14 Error in fertilizer code. Correct input file. TPFT D Field input section not found. Please add to input file. **TPFT**D Error in field inputs. Check format. IPFLD 10 Error in weather station input. Correct input file. IPFLD 11 Error in soil identification input. Correct input file. TPHAR Harvest input section not found. Please add to input file. TPHAR Error in harvest inputs. Check format. TPHAR Harvest growth stage not found. Please add to input file. IPHAR Reported harvest date not found. Please add to input file. TPHAR Reported harvest date after planting not found. Please add to input file. TPHAR 10 Error in date of harvest input. Correct input file.

DSSAT v3, Volume 2 • DSSAT v3,

IPHAR 11 Error in harvest input. Correct input file. IPHAR 12 Error in harvest stage code. Correct input file. IPIRR Irrigation input section not found. Please add to input file. TPTRR Error in irrigation inputs. Check format. TPTRR 10 Error in date of irrigation input. Correct input file. IPIRR 11 Error in amount of irrigation input. Correct input file. IPIRR Error in irrigation code. Correct input file. IPPARM 21 Pest parameter input section not found. Please correct file. IPPLNT Planting input section not found. Please add to input file. IPPLNT Error in planting inputs. Check format. IPPLNT 10 Error in planting date input. Check format. IPPLNT 11 Error in plant population input. Check format. IPPLNT 12 Error in row spacing input. Check format. IPPLNT 13 Error in row orientation input. Check format. IPRES Residue input section not found. Please add to input file. IPRES Error in residue inputs. Check format. IPRES 10 Error in date of residue application input. Correct input file. TPRES 11 Error in amount of residue input. Correct input file. IPRES 12 Error in amount of residue N input. Correct input file. IPRES 13 Error in amount of residue P input. Correct input file. **IPRES** 14 Error in amount of residue K input. Correct input file.

IPSLAN Initial soil analysis section not found. Please add to input file. IPSLAN Error in initial soil analysis inputs. Check format. TPSLAN 10 Error in initial bulk density inputs. Please check data. TPSLAN 11 Error in initial organic carbon inputs. Please check data. IPSLAN Error in initial nitrogen inputs. Please check data. IPSLIN Initial soil input section not found. Please add to input file. IPSLIN Error in initial soil inputs. Check format. IPSLIN 10 Error in initial soil water inputs. Please check data. TPSL'IN 11 Error in initial NH4 inputs. Please check data. IPSLIN Error in initial NO3 inputs. Please check data. TPST TN 13 Error in initial residue weight inputs. Please check data. TPSLTN 14 Error in initial residue nodule weight inputs. Please check data. IPSLIN 15 Error in inoculation efficiency data. Please check data. IPSLIN 16 Error in fixation efficiency data. Please check data. TPSTM Simulation control section not found. Please add to input file. IPSIM Incorrect number of lines in simulation control section. Check format. TPSTM Impossible combination--for MEEVP='Z', MEPHO must be 'L'. TPSOTT. Error in Soil Selection entry. Fix entry or batch file. IPSOIL More than 19 layers in the soil profile. Correct input file. IPSOIL Error in Soil Selection entry. Fix soil input file. TPSOTT. End of soil file. Please add missing information to input file.

IPSOIL Depth of second tier does not match the one of the first tier. Fix input file. IPSOIL Number of layers in second tier does not match the number in the first tier. IPSOIL 21 Soil input section not found. Please correct file. IPVAR Error in Cultivar entry. Fix entry or batch file. IPVAR Error in Cultivar entry. Fix cultivar input file. IPVAR 21 Genetics input section not found. Please correct file. TPVAR 2.2 LFMAX is less than or equal 0. Please correct file. IPVAR 23 SLAVAR is less than or equal 0. Please correct file. TPVAR 24 XFRUIT is less than or equal 0. Please correct file. IPVAR 25 WIPSD is less than or equal 0. Please correct file. IPVAR 26 SDPDVR is less than or equal 0. Please correct file. IPVAR 27 SFDUR is less than or equal 0. Please correct file. IPVAR 28 PODUR is less than or equal 0. Please correct file. IPWTH Simulation date must be AFTER first available weather day. Correct dates. IPWTH Missing day in weather data file. IPWTH Missing or negative data in weather data file. PLANT Error in photosynthesis process option. Please correct input file. PATH Code not found in profile file DSSATPRO.FLE. Please correct file. READA Error in experiment data (averages) file. Could not find @IRNO header line. READA 2 Error in experiment data (averages) file. SEDLYR Error in Soil Sensitivity Analysis Selection entry. Fix entry or batch file.

SEWTH Error in Weather Sensitivity Analysis Selection. Fix entry or batch file. SWFIX Error in Fertilizer Sensitivity Analysis Selection. Fix entry or batch file. SWINSC Error in Initial Soil Sensitivity Analysis Selection. Fix entry or batch file. SWIRR Error in Irrigation Sensitivity Analysis Selection. Fix entry or batch file. WEATHR 1 Weather method selected not available. Please fix input file. WTHMOD Weather modification created negative data in minimum data set. Check changes. MISC -1 End-of-file encountered in input file. MISC 6100 Integer overflow in input file. Check format. MISC 6101 Invalid integer in input file. Check format. 6103 MISC Invalid real in input file. Check format. MISC 6205 A Edit descriptor expected for Character. Check format. MISC 6206 Invalid format in input file. Check format. MISC 6416 File not found. Create input file.

CHAPTER NINE. NEW CROP MODEL FEATURES

NITROGEN BALANCE AND NITROGEN FIXATION (GRAIN LEGUME MODELS ONLY)

The soil N-balance in DSSAT v3 CERES models is the same as the soil N-balance of the individual CERES models in DSSAT v2.1 (Godwin and Jones, 1991). CROPGRO now also has detailed soil and plant nitrogen balance components, which include simulation of nitrogen uptake, nitrogen fixation, and nitrogen mobilization. Hoogenboom et al. (1990) incorporated the CERES-Wheat soil-N balance into SOYGRO V5.42 and added a nitrogen fixation component. This version of SOYGRO, called SOYNIT, underwent testing with 14 different data sets from the NiFTAL Project (Hoogenboom et al. 1990). These components were incorporated into CROPGRO and therefore the soybean, peanut, and dry bean models are now sensitive to soil-N and N-fixing dynamics. Users can run the models without simulating the soil nitrogen balance, and in this case, nitrogen is assumed to be non-limiting as was the case in the individual grain legume models. Also, users can select the soil nitrogen balance without simulating nodule growth and nitrogen fixation. In this case, soil nitrogen is taken up first each day, and any remaining nitrogen demand in the plant is met by allocating sufficient carbon to fix the nitrogen without considering limitations in the nitrogen-fixing mechanisms. Usually, both the soil nitrogen-balance and dynamic nitrogen-fixation are turned on, so that plant carbohydrate status, soil temperature, aeration, and limiting nodule mass can limit nitrogen fixation and simulate non-nodulating legume lines, such as those used in many nitrogen fixation experiments.

CROP ROTATIONS

An option exists which allows users to select whether to reinitialize the soil conditions after each run or to use the ending conditions from one simulation run as inputs to subsequent simulation runs. This feature allows for crop rotations to be studied, with carryover effects in the soil currently limited to crop residue, soil nitrogen, soil carbon, and soil water as a function of soil depth. Future additions will include phosphorus, other soil properties, and perhaps pest organisms. The Sequence Analysis program of DSSAT v3, described in Volume 3-2 (Thornton et al. 1994 b) of this book, allows users to specify crop rotations and to analyze results over long-term simulations.

EVAPOTRANSPIRATION CALCULATIONS

In the CERES and CROPGRO models, options exist for the Priestley-Taylor method (Priestley and Taylor, 1972) and the FAO-Penman method (Doorenbos and Pruitt 1975) for potential evapotranspiration calculation. The Priestley-Taylor method is the same as used in previous versions of the models and was described by Ritchie (1985). The use of the FAO-Penman method requires daily humidity and wind speed data, in addition to the minimum weather data set required previously (Penman, 1948). The DSSAT v3 weather file format includes columns for these data when they are available. However, when these additional inputs are not available or have not been measured, users should select the Priestley-Taylor method.

PHOTOSYNTHESIS CALCULATION OPTIONS (GRAIN LEGUME MODELS ONLY)

The CROPGRO model includes two options to compute daily canopy photosynthesis. The first option is based on a single calculation of daily light interception followed by a single calculation of daily canopy photosynthesis. The second option is based on hourly calculations of sunlit and shaded leaf light interception followed by hourly photosynthesis calculations. Using this option, the daily canopy calculation is based on a canopy light extinction coefficient, in contrast to table look-up values in the earlier GRO models. The same light response curve is still used in CROPGRO, but it was modified slightly. For the hourly calculations, the hedge-row photosynthesis model developed by Boote and Loomis (1991) was used, since it more accurately simulates the effects of row and plant spacing on light interception and growth, which is needed to simulate plant density studies. For the hedge-row model, relationships were needed to simulate height and width of canopies, and thus routines were added to crop species files relating to potential elongation of internodes to node position on the plants in order to compute canopy height and width growth.

CARBON DIOXIDE EFFECTS

The CERES and CROPGRO models include the capability to simulate the effects of CO_2 on photosynthesis and water use. Internally in the models the daily potential transpiration calculations are being modified by the CO_2 concentration, based on the effects of CO_2 on stomatal conductivity (Peart et al., 1989). For the CERES and CROPGRO models, when the canopy photosynthesis model is used, a multiplicative modification is made to daily canopy photosynthesis as

described by Curry et al. (1990). For the CROPGRO model, when the hedge-row photosynthesis model is selected, CO_2 is used to modify the leaf assimilation rate in a more mechanistic way, with an adaptation of the Farquhar et al. model by Pickering et al. (1993).

CLIMATE CHANGE STUDIES

The DSSAT v3 crop simulation models have the capability to modify daily weather data, read in from the weather file, as well as photoperiod (daylength). Each weather variable can be modified, by multiplying a constant times the input value and/or by adding a constant to it. This provides flexibility to change one or all weather variables, and includes the capability to set them to constant values similar to conditions as observed in growth chamber and other constant environment experiment studies. Users can specify the date that a given modification is to begin and can also define more than one entry if the experiment includes environment switching of any type. These options are included in a special environmental section of FILEX for any experiment and can also be changed interactively during any model run.

Weather Generators $% \left({{{\left({{{G_{{\rm{B}}}}} \right)}} \right)$

The DSSAT v3 crop simulation models have built-in capabilities for simulating weather using either one of two weather generators. Coefficients for generating weather are stored in site-specific climate files, e.g. *.CLI, such as UFGA.CLI, where UFGA is the site of the weather station. One of the weather generators is SIMMETEO, as developed by Geng et al. (1986). SIMMETEO requires only monthly averages of solar radiation, maximum and minimum air temperatures, precipitation, and days with precipitation as inputs. SIMMETEO then computes coefficients and uses the WGEN weather generator to simulate daily data. The second weather generator is WGEN, as developed by Richardson (1985). WGEN requires more statistics as input than does SIMMETEO. Its monthly weather statistics can be computed from daily data for a number of years, preferably five or more complete historical weather years. The DSSAT v3 models' ability to simulate weather internally, using only monthly averages of variables, will greatly expand the application of these models to areas where the monthly data are all that will be available.

Species, Ecotype And Cultivar Inputs

The DSSAT v3 grain legume models have three files that quantify parameters for each grain legume crop. The earlier genetics file for each crop, e.g., GENETICS.SB9, used for soybean in SOYGRO V5.42 in DSSAT v2.1, was split into two files for DSSAT v3 and additional changes were made. One file is the CULtivar file; for example, SBGRO940.CUL. This file contains fewer genetic coefficients for soybean than SOYGRO V5.42. A second file is the ECOtype file; for example, SBGRO940.ECO, which contains coefficients that are thought to change among GROUPS of cultivars, but not for every cultivar. Thus the number of coefficients that have to be estimated for a new cultivar was reduced to 15. Since the coefficients in this file have to estimated for each cultivar that is to be simulated, they are discussed in more detail in Appendix A of this Part. A third file of parameters is the SPEcies file, designated by SPE, for example SBGRO940.SPE. This file is equivalent to the CROPPARM file in the earlier GRO models. In the naming convention for the cultivar file, ecotype file, and species file, the first two characters correspond to a particular species, and the following six characters represent the model used and its version number. For instance, the file, SBGRO940.*, designates the Soybean species, ecotype, and cultivar input files used in the GRO model (CROPGRO) released in 1994.

Both the generic CERES model and the CERES - Rice model use only the cultivar files and do not have either an ecotype file or a species file as input. The change in these models in DSSAT v3 from those of the older models is that the DSSAT v3 genetic files use the same file format as that of the new Input/Output file structures described in Volume 2-1 (Jones et.al 1994) of this book.

PEST EFFECTS (GRAIN LEGUME MODELS ONLY)

A generalized method for incorporating pest damage in the crop models was developed (Batchelor et al., 1993) for DSSAT v3. Twenty-one coupling points were identified in the CROPGRO model, and damage can be simulated by reducing various state and/or rate variables. Damage can also be induced by input or field-observed damage or for field-measured pest populations. Pest and pest damage coefficients are defined in a special pest input file (e.g., for soybean, SBGRO940.PST). These pest coefficients are defined through the coupling points in the crop model and the damage rates associated with a unit of pest input.

Field-observed pest damage or pest densities are input into the time course observed data file (FILET), which may include plant and soil variables, as well as pest damage levels (for example, UFGA8101.SBT). This approach was taken in order to facilitate a common way of handling field data in DSSAT v3. Users can also input hypothetical values of pest levels or pest damage in the time course file (FILEA) for an experiment in order to study damage effects on crop growth and yield. A detailed description of the method for incorporating pest damage into the DSSAT v3 models can be found in Appendix B of this Part.

CHAPTER TEN. TEMPORARY MODEL INPUT FILE

In Figure 3 some of the crop simulation model interface options are shown. The model driver program distributed with DSSAT v3, i.e. MDRIV940.EXE, calls the model input module, i.e. MINPT940.EXE. The model input module reads the experiment details file FILEX and creates a temporary output file, called "IBSNAT30.INP." The input module has the option to create a temporary output file, using different formats. In Figure 3 three options are shown. Filetype is "I" for the CEGER940.EXE, CRGRO940.EXE, RICER940.EXE and CSSIM940.EXE models. Filetype "X" is also used by the CSSIM940.EXE model and could be used by other crop models if installed in DSSAT v3. A user-defined filetype could also be used for a new crop simulation module to link it to DSSAT v3. However, the input module would have to be modified to add this particular filetype to the system.

Filetype "X" is identical to the current Input/Output file format of FILEX, except that it includes only information for one treatment, rather than an entire experiment. Filetype "I" is similar to the current Input/Output file format of FILEX,

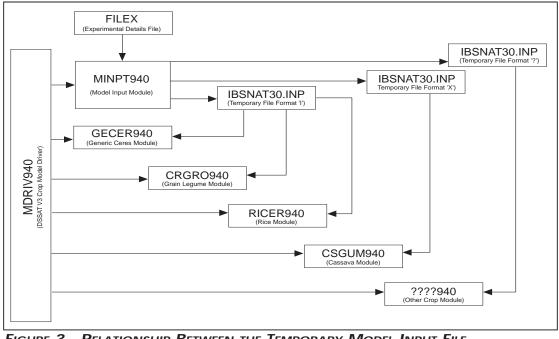


FIGURE 3. RELATIONSHIP BETWEEN THE TEMPORARY MODEL INPUT FILE AND THE VARIOUS CROP SIMULATION MODULES.

DSSAT v3, Volume 2 • DSSAT v3, Volume 2

except that it contains additional information with respect to location and names of input files, and all headers, comment lines, and blank lines have been deleted. An example of a typical temporary file is shown in Table 8. This file was generated using the same experimental and treatment selections discussed earlier in Chapter 5, "Running the Crop Model," herein. The example FILEX for this experiment is shown in Table 4.

All information shown in this file is required; if lines or headers are deleted the crop simulation models will not run.

The section "*MODEL INPUT FILE includes the run mode, i.e. interactive etc., run number, experiment number, i.e. entry number in the experiment list file EXP.LST, treatment number, and number of treatments in the selected experiment.

The section "*FILES" includes the name and path for respectively the crop simulation module, FILEX, FILEA, FILET, species file, ecotype file, cultivar file, pest file, soils file, weather file, and output files.

The section "*SIMULATION CONTROL" is identical to the simulation control section of FILEX, except that the headers have been deleted. Note that it also includes the automatic management section.

The section "*EXP.DETAILS" is identical to the experiment details section of FILEX, except for no header information.

The section "*TREATMENTS" only shows information for the actual treatment which is being simulated, while all level information has been deleted.

The sections "*CULTIVARS", "*FIELDS", "*INITIAL CONDITIONS", "*PLANTI-NG DETAILS", "*IRRIGATION", "*FERTILIZERS", "*RESIDUES", "*ENVIRON-MENT" and "*HARVEST" all only include the information for the actual treatment level which is simulated. The information for the other levels has been eliminated, and all headers have been deleted. If a particular section does not have any levels, such as "*HARVEST" shown in the example, the actual section header still needs to be included.

The "*SOIL" section includes the detailed soil profile description, including loca-

tion, names, soil surface and soil layer information for the soil selected under the "*FIELDS" section. A blank line delineates the information for the first and second tier. The format is the same as the format of the data stored in the actual soil profile file, except for the headers.

The "*CULTIVAR" section includes all the values of the variables for the particular cultivar selected under the "*CULTIVAR" section discussed earlier. The format is the same as the format of the data stored in the actual cultivar file, except for the headers.

The user needs to be aware that the crop simulation modules do not include error checking procedures. If the user decides to modify the format of this temporary file, or creates his own temporary file through different procedures, we can not guarantee that the crop simulation module will work properly.

TABLE 8. Example of a Temporary Crop Model Input File, Using File Format = "I" ("IBSNAT30.INP").

```
*MODEL INPUT FILE
               I 1 2 1
                                          2
*FILES
MODEL
           CRGR0940.EXE
FILEX
          UFGA7801.SBX
FILEA
          UFGA7801.SBA
          UFGA7801.SBT
FILET
SPECIES
          SBGR0940.SPE C:\DSSAT3\GENOTYPE\
ECOTYPE
          SBGR0940.ECO C:\DSSAT3\GENOTYPE\
CULTIVAR
          SBGR0940.CUL C:\DSSAT3\GENOTYPE\
          SBGR0940.PST C:\DSSAT3\PEST\
PESTS
SOILS
           SOIL.SOL C:\DSSAT3\SOIL\
WEATHER
           UFGA7801.WTH C:\DSSAT3\WEATHER\
OUTPUT
           OVERVIEW
*SIMULATION CONTROL
                 1 S 78166 2150 BRAGG, IRRIGATED & NON-IR
              1
               Y
                   Y
                       Y N N N
               M M E
                            R
                                S
                                      С
               R
                 R N
                           R
                                М
               Ν
                  Y
                       Y
                            3
                                Y
                                    Y
                                          Y
                                              Y N N Y
!AUTOMATIC MANAGEM
            78155 78200 40. 100. 30. 40. 10.
             30. 50. 100. GS000 IR001 10.0 .750
             30. 50.
                      25. FE001 GS000
            100.
                 1
                      20.
              0 78365 100.
                           0.
*EXP.DETAILS
 2UFGA7801 SB BRAGG, IRRIGATED & NON-IRRIGATED
*TREATMENTS
 11 0 0 IRRIGATED
*CULTIVARS
  SB IB0001 BRAGG (7)
*FIELDS
  UFGA0001 UFGA7801 -99 0. DR000 0. 0. 00000 FSA 180. IBSB910015
*INITIAL CONDITIONS
                                     1
    SB 78166 100. 0. 1.00 1.00
    5. .086
             .6 1.5
   15. .086
              .6
                 1.5
   30. .086
              .6 1.5
   45. .086
              .6 1.5
   60. .086
            .6 1.5
   90. .076
            .6 .6
   120. .076
            .6 .5
   150. .130
            .6 .5
   180. .258
            .6 .5
*PLANTING DETAILS
                      S R 91. 0. 4.0 -99. -99. -99.0 -99.0
  78166 -99 29.9 29.9
```

	ON															
.750	-99.	-99.	-99.	-9	99 -9	9.	0									
78181		13.														
78230		13.)												
78235		13.														
78237		13.	C													
78240		11.	C													
78242		11.	C													
78244		11.	C													
78246		11.	C													
78250		11.	C													
78253		11.	C													
78255		8.	C													
78250																
		8.														
78262		8.	C													
78265		8.	C													
78269		7.														
78272		8.	C													
78279		7.														
78283		8.														
78294		10.	C)												
*FERTILIZ																
*RESIDUES								_								
78166		1000	.80) .(.00	0 100). 15	5.								
*ENVIRONM	ENT															
*HARVEST																
*SOIL																
IBSB9100			F	'SA			~ ~	Fine Sa								
IBSB9100 Gainesvi	lle US	SA		29.63	30 -82.	370 Lo	amy,si	ilic,hy		Gross	. Paleu	ıdults	(15)			
IBSB9100 Gainesvi .18 5.0	lle US .50	SA) 66	. 1.0	29.63 00	30 -82. .84 IBO	370 Lc 01 IBC	oamy,si 001 IB(llic,hy)01	perth							
IBSB9100 Gainesvi .18 5.0 5.	lle US .50	SA) 66 023	. 1.0 .086	29.63)0 .230	30 -82. .84 IB0 1.000	370 Lc 01 IBC 7.4	oamy,s: 001 IB(1.36	ilic,hy)01 .90	/perth -99.0	-99.0	-99.0	.00	5.3	-99.0		
IBSB9100 Gainesvi .18 5.0 5. 15.	11e US .50	GA 066 023 023	. 1.0 .086 .086	29.63)0 .230 .230	30 -82. .84 IB0 1.000 1.000	370 Lc 01 IBC 7.4 7.4	oamy,si 001 IB(1.36 1.40	ilic,hy)01 .90 .69	/perth -99.0 -99.0	-99.0 -99.0	-99.0 -99.0	.00	5.3 5.4	-99.0	-99.0	
IBSB9100 Gainesvi .18 5.0 5. 15. 30.	lle US .50	GA 023 023 023 023	. 1.0 .086 .086 .086	29.63 00 .230 .230 .230 .230	30 -82. .84 IB0 1.000 1.000 .498	370 Lc 01 IB0 7.4 7.4 15.8	pamy,si 001 IB(1.36 1.40 1.46	ilic,hy)01 .90 .69 .28	-99.0 -99.0 -99.0 -99.0	-99.0 -99.0 -99.0	-99.0 -99.0 -99.0	.00 .00 .00	5.3 5.4 5.7	-99.0 -99.0	-99.0 -99.0	
IBSB9100 Gainesvi .18 5.0 5. 15. 30. 45.	11e US .50	GA 023 023 023 023 023 023	. 1.0 .086 .086 .086 .086	29.63 00 .230 .230 .230 .230 .230	30 -82. .84 IB0 1.000 1.000 .498 .294	370 Lc 01 IBC 7.4 7.4 15.8 28.0	Damy,si 001 IB(1.36 1.40 1.46 1.47	ilic,hy)01 .90 .69 .28 .20	-99.0 -99.0 -99.0 -99.0 -99.0	-99.0 -99.0 -99.0 -99.0	-99.0 -99.0 -99.0 -99.0	.00 .00 .00 .00	5.3 5.4 5.7 5.8	-99.0 -99.0 -99.0	-99.0 -99.0 -99.0	
IBSB9100 Gainesvi .18 5.0 5. 15. 30. 45. 60.	11e US .50	A 66 023 023 023 023 023 023	. 1.0 .086 .086 .086 .086 .086	29.6 00 .230 .230 .230 .230 .230 .230	30 -82. .84 IB0 1.000 .498 .294 .294	370 Lc 01 IB0 7.4 7.4 15.8 28.0 27.6	pamy,si 001 IB(1.36 1.40 1.46 1.47 1.47	ilic,hy)01 .90 .69 .28 .20 .20	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0	-99.0 -99.0 -99.0 -99.0 -99.0	-99.0 -99.0 -99.0 -99.0 -99.0	.00 .00 .00 .00	5.3 5.4 5.7 5.8 5.8	-99.0 -99.0 -99.0 -99.0	-99.0 -99.0 -99.0 -99.0	
IBSB9100 Gainesvi .18 5.0 5. 15. 30. 45. 60. 90.	11e US .50	GA 023 023 023 023 023 023 023 021	. 1.0 .086 .086 .086 .086 .086 .086	29.6 00 .230 .230 .230 .230 .230 .230 .230	30 -82. .84 IB0 1.000 .498 .294 .294 .380	370 Lc 01 IBC 7.4 7.4 15.8 28.0 27.6 17.5	pamy,si 001 IB(1.36 1.40 1.46 1.47 1.47 1.43	ilic,hy 001 .90 .69 .28 .20 .20 .09	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0	.00 .00 .00 .00	5.3 5.4 5.7 5.8 5.8 5.9	-99.0 -99.0 -99.0 -99.0 -99.0	-99.0 -99.0 -99.0 -99.0 -99.0	
IBSB9100 Gainesvi .18 5.0 5. 15. 30. 45. 60.	11e US .50	A 023 023 023 023 023 023 021 020	. 1.0 .086 .086 .086 .086 .086 .076 .076	29.6 230 .230 .230 .230 .230 .230 .230 .230 .230	30 -82. .84 IB0 1.000 .498 .294 .294 .380 .133	370 Lc 01 IBC 7.4 15.8 28.0 27.6 17.5 .3	Doamy, si 001 IB(1.36 1.40 1.46 1.47 1.47 1.43 1.48	ilic,hy 001 .90 .28 .20 .20 .09 .03	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0	.00 .00 .00 .00	5.3 5.4 5.7 5.8 5.8 5.9	-99.0 -99.0 -99.0 -99.0 -99.0	-99.0 -99.0 -99.0 -99.0	
IBSB9100 Gainesvi .18 5.0 5. 15. 30. 45. 60. 90.	11e US .50	A 023 023 023 023 023 023 021 020	. 1.0 .086 .086 .086 .086 .086 .076 .076	29.6 230 .230 .230 .230 .230 .230 .230 .230 .230	30 -82. .84 IB0 1.000 .498 .294 .294 .380	370 Lc 01 IBC 7.4 15.8 28.0 27.6 17.5 .3	pamy,si 001 IB(1.36 1.40 1.46 1.47 1.47 1.43	ilic,hy 001 .90 .28 .20 .20 .09 .03 .03	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	.00 .00 .00 .00 .00	5.3 5.4 5.7 5.8 5.8 5.9 5.9	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0	-99.0 -99.0 -99.0 -99.0 -99.0	
IBSB9100 Gainesvi .18 5.0 5. 15. 30. 45. 60. 90. 120.	11e US .50	GA 023 023 023 023 023 023 021 020 027	. 1.0 .086 .086 .086 .086 .086 .076 .076 .130	29.6 230 .230 .230 .230 .230 .230 .230 .230 .230	30 -82. .84 IB0 1.000 1.000 .498 .294 .294 .380 .133 .062	370 Lc 01 IBC 7.4 15.8 28.0 27.6 17.5 .3 .1	Doamy, si 001 IB(1.36 1.40 1.46 1.47 1.47 1.43 1.48	ilic,hy 001 .90 .28 .20 .20 .09 .03 .03	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	.00 .00 .00 .00 .00 .00	5.3 5.4 5.7 5.8 5.8 5.9 5.9 5.9	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	
IBSB9100 Gainesvi .18 5.0 5. 15. 30. 45. 60. 90. 120. 150. 180.	11e US .50	GA 023 023 023 023 023 023 021 020 027 070	. 1.0 .086 .086 .086 .086 .086 .076 .130 .258	29.6 230 .230 .230 .230 .230 .230 .230 .230 .230 .230 .230 .230 .230 .230 .230	30 -82. .84 IB0 1.000 .498 .294 .294 .380 .133 .062 .031	370 Lc 01 IBC 7.4 7.4 15.8 28.0 27.6 17.5 .3 .1 .0	Doamy, si 001 IB0 1.36 1.40 1.46 1.47 1.47 1.43 1.48 1.57 1.79	ilic, hy 001 .90 .28 .20 .20 .09 .03 .03 .03	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	.00 .00 .00 .00 .00 .00 .00	5.3 5.4 5.7 5.8 5.8 5.9 5.9 5.9	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	
IBSB9100 Gainesvi .18 5.0 5. 15. 30. 45. 60. 90. 120. 150. 180. 5.	11e US .50 0	EA 0 66 023 023 023 023 023 021 020 027 070 .0	. 1.0 .086 .086 .086 .086 .086 .076 .076 .130	29.63 00 .230 .230 .230 .230 .230 .230 .230	30 -82. .84 IB0 1.000 .498 .294 .294 .380 .133 .062 .031	370 Lc 01 IBC 7.4 15.8 28.0 27.6 17.5 .3 .1	Damy, si 001 IB(1.36 1.40 1.46 1.47 1.47 1.43 1.48 1.57	ilic, hy 001 .90 .69 .28 .20 .20 .09 .03 .03 .03 .03	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	.00 .00 .00 .00 .00 .00 .00	5.3 5.4 5.7 5.8 5.8 5.9 5.9 5.9	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	
IBSB9100 Gainesvi .18 5.0 5. 15. 30. 45. 60. 90. 120. 150. 180. 5. 15.	11e US .50	EA 0 66 023 023 023 023 021 020 027 070 .0 .0	. 1.0 .086 .086 .086 .086 .086 .076 .130 .258	29.6 230 .230 .230 .230 .230 .230 .230 .230 .230 .230 .230 .230 .230 .230 .230	30 -82. .84 IB0 1.000 .498 .294 .380 .133 .062 .031 .0 .0	370 Lc 01 IBC 7.4 15.8 28.0 27.6 17.5 .3 .1 .0 .0	001 IB0 1.36 1.40 1.46 1.47 1.47 1.43 1.48 1.57 1.79 .0 .0	ilic, hy 001 .90 .28 .20 .20 .09 .03 .03 .03	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	.00 .00 .00 .00 .00 .00 .00	5.3 5.4 5.7 5.8 5.8 5.9 5.9 5.9	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	
IBSB9100 Gainesvi .18 5.0 5. 15. 30. 45. 60. 90. 120. 150. 180. 5.	11e US .50 0	EA 0 66 023 023 023 023 023 021 020 027 070 .0	. 1.0 .086 .086 .086 .086 .076 .076 .130 .258 .0	29.63 00 .230 .360 .360 .360 .360 .360 .360	30 -82. .84 IB0 1.000 .498 .294 .294 .380 .133 .062 .031	370 Lc 01 IB0 7.4 7.4 15.8 28.0 27.6 17.5 .3 .1 .0	001 IB0 1.36 1.40 1.46 1.47 1.47 1.43 1.48 1.57 1.79	ilic, hy 001 .90 .69 .28 .20 .20 .09 .03 .03 .03 .03	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	.00 .00 .00 .00 .00 .00 .00	5.3 5.4 5.7 5.8 5.8 5.9 5.9 5.9	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	
IBSB9100 Gainesvi .18 5.0 5. 15. 30. 45. 60. 90. 120. 150. 180. 5. 15.	11e US .50 0 .0	EA 0 66 023 023 023 023 021 020 027 070 .0 .0	. 1.0 .086 .086 .086 .086 .076 .130 .258 .0 .0	29.6 00 .230 .360 .360 .360 .360	30 -82. .84 IB0 1.000 .498 .294 .380 .133 .062 .031 .0 .0	370 Lc 01 IBC 7.4 15.8 28.0 27.6 17.5 .3 .1 .0 .0	001 IB0 1.36 1.40 1.46 1.47 1.47 1.43 1.48 1.57 1.79 .0 .0	ilic, hy 001 .90 .69 .28 .20 .20 .09 .03 .03 .03 .03 .00 .0	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	.00 .00 .00 .00 .00 .00 .00	5.3 5.4 5.7 5.8 5.8 5.9 5.9 5.9	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	
IBSB9100 Gainesvi .18 5.0 5. 15. 30. 45. 60. 90. 120. 150. 180. 5. 15. 30.	11e US .50 0 .0	5A 023 023 023 023 023 023 021 020 027 070 .0 .0 .0	. 1.0 .086 .086 .086 .086 .076 .130 .258 .0 .0 .0	29.63 00 .230 .360 .360 .360 .00 .360 .00 .360 .00 .00 .00 .00 .00 .00 .00	30 -82. .84 IB0 1.000 1.000 .498 .294 .294 .380 .133 .062 .031 .0 .0 .0	370 Lc 01 IBC 7.4 15.8 28.0 27.6 17.5 .3 .1 .0 .0 .0	001 IB0 1.36 1.40 1.46 1.47 1.47 1.43 1.48 1.57 1.79 .0 .0	ilic, hy 001 .90 .28 .20 .20 .09 .03 .03 .03 .03 .00 .0 .0	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	.00 .00 .00 .00 .00 .00 .00	5.3 5.4 5.7 5.8 5.8 5.9 5.9 5.9	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	
IBSB9100 Gainesvi .18 5.0 5. 15. 30. 45. 60. 90. 120. 150. 180. 5. 15. 30. 45.	11e US .50 0 .0 .0 .0	5A 0 66 023 023 023 023 023 021 020 027 070 .0 .0 .0 .0 .0	. 1.0 .086 .086 .086 .086 .076 .076 .130 .258 .0 .0 .0 .0 .0	29.63 00 .230 .360 .00 .00 .00 .00 .00 .00 .00	30 -82. .84 IB0 1.000 1.000 .498 .294 .294 .380 .133 .062 .031 .0 .0 .0 .0	370 Lc 01 IBC 7.4 7.4 15.8 28.0 27.6 17.5 .3 .1 .0 .0 .0 .0 .0	Doamy, si Doamy, si Doamy, si Doamy, si 1.36 1.40 1.46 1.47 1.47 1.47 1.43 1.48 1.57 1.79 .0 .0 .0 .0	ilic, hy 001 .90 .28 .20 .20 .09 .03 .03 .03 .03 .03 .00 .0 .0	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	.00 .00 .00 .00 .00 .00 .00	5.3 5.4 5.7 5.8 5.8 5.9 5.9 5.9	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	
IBSB9100 Gainesvi .18 5.0 5. 15. 30. 45. 60. 90. 120. 150. 180. 5. 15. 30. 45. 60.	11e US .50	EA 0 66 023 023 023 023 023 021 020 027 070 .0 .0 .0 .0 .0 .0	. 1.0 .086 .086 .086 .086 .076 .076 .130 .258 .0 .0 .0 .0 .0 .0	29.63 00 .230 .230 .230 .230 .230 .230 .230 .230 .230 .230 .230 .0 .0 .0 .0 .0 .0	30 -82. .84 IB0 1.000 1.000 .498 .294 .294 .380 .133 .062 .031 .0 .0 .0 .0 .0	370 Lc 01 IBC 7.4 7.4 15.8 28.0 27.6 17.5 .3 .1 .0 .0 .0 .0 .0 .0	Doamy, si Doamy, si Doamy, si Doamy, si 1.36 1.40 1.46 1.47 1.47 1.47 1.43 1.48 1.57 1.79 .0 .0 .0 .0 .0	ilic, hy 001 .90 .28 .20 .20 .09 .03 .03 .03 .03 .03 .00 .0 .0 .0 .0	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	.00 .00 .00 .00 .00 .00 .00	5.3 5.4 5.7 5.8 5.8 5.9 5.9 5.9	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	
IBSB9100 Gainesvi .18 5.0 5. 15. 30. 45. 60. 90. 120. 150. 180. 5. 15. 30. 45. 60. 90.	11e US .50	SA 023 023 023 023 023 023 021 020 027 070 .0 .0 .0 .0 .0 .0 .0	. 1.0 .086 .086 .086 .086 .076 .076 .130 .258 .0 .0 .0 .0 .0 .0 .0 .0	29.63 100 .2300 .0000 .00000 .00000 .00000 .0000 .0000 .0000 .0000 .0000	30 -82. .84 IB0 1.000 .498 .294 .294 .380 .133 .062 .031 .0 .0 .0 .0 .0 .0	370 Lc 01 IBC 7.4 7.4 15.8 28.0 27.6 17.5 .3 .1 .0 .0 .0 .0 .0 .0 .0	Doamy, 51 001 IB0 1.36 1.40 1.46 1.47 1.47 1.43 1.48 1.57 1.79 .0 .0 .0 .0 .0 .0	ilic, hy 001 .90 .28 .20 .20 .09 .03 .03 .03 .03 .03 .03 .00 .0 .0 .0 .0	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	.00 .00 .00 .00 .00 .00 .00	5.3 5.4 5.7 5.8 5.8 5.9 5.9 5.9	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	
IBSB9100 Gainesvi .18 5.0 5. 15. 30. 45. 60. 90. 120. 150. 180. 5. 15. 30. 45. 60. 90. 120.	11e US .50	SA 023 023 023 023 023 023 021 020 027 070 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	. 1.0 .086 .086 .086 .086 .076 .076 .130 .258 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	29.63 2300 .000 .000 .00 .00 .00 .00 .00	30 -82. .84 IB0 1.000 .498 .294 .294 .380 .133 .062 .031 .0 .0 .0 .0 .0 .0 .0 .0	370 Lc 01 IBC 7.4 7.4 15.8 28.0 27.6 17.5 .3 .1 .0 .0 .0 .0 .0 .0 .0 .0	Doamy, si Doamy, si Doamy, si Doamy, si 1.36 1.40 1.46 1.47 1.47 1.47 1.43 1.48 1.57 1.79 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ilic, hy 001 .90 .28 .20 .20 .09 .03 .03 .03 .03 .03 .00 .0 .0 .0 .0 .0 .0 .0	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	.00 .00 .00 .00 .00 .00 .00	5.3 5.4 5.7 5.8 5.8 5.9 5.9 5.9	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	
IBSB9100 Gainesvi .18 5.0 5. 15. 30. 45. 60. 90. 120. 150. 180. 5. 15. 30. 45. 60. 90. 120. 15.	11e US .50	SA 023 023 023 023 023 023 021 020 027 070 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	. 1.0 .086 .086 .086 .076 .076 .130 .258 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	29.63 2300 .000 .0000 .00000 .00000 .00000 .0000 .0000 .0000 .0000 .0000 .0000 .0000	30 -82. .84 IBO 1.000 .498 .294 .294 .380 .133 .062 .031 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	370 Lc 01 IBC 7.4 7.4 15.8 28.0 27.6 17.5 .3 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0	Doamy, si Doamy, si Doll IBC 1.36 1.40 1.46 1.47 1.47 1.43 1.48 1.57 1.79 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	ilic, hy 001 .90 .28 .20 .20 .09 .03 .03 .03 .03 .03 .00 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	.00 .00 .00 .00 .00 .00 .00	5.3 5.4 5.7 5.8 5.8 5.9 5.9 5.9	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	
IBSB9100 Gainesvi .18 5.0 5. 15. 30. 45. 60. 90. 120. 150. 180. 5. 15. 30. 45. 60. 90. 120. 15. 30. 45. 60. 90. 120. 15. 30. 45. 60. 90. 12. 15. 30. 15. 15. 30. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15	11e US .50	SA 0 66 023 023 023 023 023 021 020 027 070 .0 .0 .0 .0 .0 .0 .0 .0 .0	. 1.0 .086 .086 .086 .076 .076 .130 .258 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	29.63 100 .2300 .0000 .00000 .0000 .0000 .0000 .0000 .00000 .0000 .0000 .00000 .00000 .0000 .000000 .00000 .00000000	30 -82. .84 IBO 1.000 .498 .294 .380 .133 .062 .031 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	370 Lc 01 IBC 7.4 7.4 15.8 28.0 27.6 17.5 .3 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.001 ISO 1.36 1.40 1.46 1.47 1.47 1.43 1.48 1.57 1.79 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	ilic, hy 001 .90 .28 .20 .20 .09 .03 .03 .03 .03 .03 .00 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	.00 .00 .00 .00 .00 .00	5.3 5.4 5.7 5.8 5.9 5.9 5.9 5.9	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	-99.0 -99.0 -99.0 -99.0 -99.0 -99.0 -99.0	.180

Crop Models • Cr

REFERENCES

- Alargarswamy, G., and J. T. Ritchie. 1991. Phasic development in CERES-Sorghum model. p. 143-152. *In:* T. Hodges (Ed.). Predicting Crop Phenology. CRC Press, Boca Raton, FL.
- Batchelor, W. D., J. W. Jones, K. J. Boote, and H. O. Pinnschmidt. 1993. Extending the use of crop models to study pest damage. Transactions of the ASAE 36(2):551-558.
- Batchelor, W.D., R.W. McClendon, J.W. Jones and D.B. Adams. 1989. An expert simulation system for soybean insect pest management. Transactions of the ASAE 32(1):335-342.
- Boote, K. J., J. W. Jones, G. Hoogenboom, G. G. Wilkerson, and S. S. S. Jagtap. 1989.
 PNUTGRO V1.02: Peanut crop growth simulation model. User's Guide. Florida
 Agricultural Experiment Station Journal No. 8420. University of Florida, Gainesville, FL. 76 pp.
- Boote, K.J. and R. S. Loomis. 1991. The prediction of canopy assimilation. p. 109-140. *In:* K.J. Boote and R.S. Loomis (ed.) Modeling crop photosynthesis - from biochemistry to canopy. CSSA and ASA, Madison, WI.
- Chan H., P. W. Wilkens, G. Hoogenboom, J.W. Jones and D. C. Godwin. 1994. Graphing simulated and experiment data. *In:* Tsuji, G.Y., G. Uehara and S. Balas (eds). DSSAT v3. Vol. 2-3. University of Hawaii, Honolulu, HI.
- Curry, R. B., R. M. Peart, J. W. Jones, K. J. Boote, and L. H. Allen. 1990. Simulation as a tool for analyzing crop response to climate change. Transactions of the ASAE 33:981-990.
- Doorenbos, J. and W.O. Pruitt. 1975. Irrigation and drainage paper #24. *In:* Guidelines for Predicting Crop Water Requirements. FAO, Rome.
- Geng, S., F. W. T. Penning de Vries, and I. Supit. 1986. A simple method for generating daily rainfall data. Agric. For. Meteorol. 36:363-376.
- Godwin, D. C., and C. A. Jones. 1991. Nitrogen dynamics in the soil-plant systems. Chapter 13. p. 289-321. *In:* J. Hanks and J. T. Ritchie (eds.). Modeling Soil and Plant Systems. ASA Monograph 31; American Society of Agronomy; Madison, WI.

- Godwin, D. C., J. T. Ritchie, U. Singh and L. Hunt. 1989. A User's Guide to CERES Wheat: V2.10. International Fertilizer Development Center; Muscle Shoals, AL.
- Godwin, D. C., P. K. Thornton, J. W. Jones, U. Singh, S. S. Jagtap, and J. T. Ritchie. 1990. Using IBSNAT's DSSAT in strategy evaluation. p. 59-71. *In:* Proceedings of IBSNAT Symposium: Decision Support System for Agrotechnology Transfer. University of Hawaii; Honolulu, HI.
- Griffin, T. S., B. S. Johnson, and J. T. Ritchie. 1993. A simulation model for potato growth and development: SUBSTOR-Potato V2.0. Research Report Series 02.
 IBSNAT Project. Dept. Agronomy and Soil Sci.; College of Trop. Agr. and Human Resources; University of Hawaii; Honolulu, HI.
- Hansen, J.W., N.B. Pickering, J.W. Jones, C. Wells, H.V.K. Chan and D.C. Godwin. 1994. Managing and generating daily weather data. *In:* Tsuji, G.Y., G. Uehara and S. Balas (eds). DSSAT v3. Vol. 3-3. University of Hawaii, Honolulu, HI. (*In Preparation*)
- Hoogenboom, G., J. W. Jones, and K. J. Boote. 1990. Nitrogen fixation, uptake, and remobilization in legumes: A modeling approach. p. 138-186. *In:*Proceedings of IBSNAT Symposium: Decision Support System for Agrotechnology Transfer, Las Vegas, 18 October, 1989. Part II: Posters. Department of Agronomy and Soil Science, College of Tropical Agriculture and Human Resources, University of Hawaii, Honolulu, Hawaii.
- Hoogenboom, G. J. W. Jones, and K. J. Boote. 1992. Modeling growth, development and yield of grain legumes using SOYGRO, PNUTGRO, and BEANGRO : A Review. Trans. ASAE 35(6):2043-2056.
- Hoogenboom, G., J. W. White, J. W. Jones and K. J. Boote. 1991. BEANGRO V1.01: Dry bean crop growth simulation model. User's Guide. Florida Agricultural Experiment Station Journal No. N-00379; University of Florida, Gainesville, Florida. 122 pp.
- Hoogenboom, G., J. W. White, J. W. Jones, K. J. Boote. 1994. BEANGRO, a process oriented dry bean model with a versatile user interface. Agronomy Journal 86(1):182-190.

Hunt, L.A., J.W. Jones, P.K. Thornton, G. Hoogenboom, D.T. Imamura, G.Y. Tsuji and

U. Singh. 1994. Accessing data, models and application programs. *In*: Tsuji, G.Y., G. Uehara and S. Balas (eds.). DSSAT v3. Vol. 1-3. University of Hawaii, Honolulu, HI.

- Hunt, L. A., S. Pararajasingham, J. W. Jones, G. Hoogenboom, D. T. Imamura, and R. M. Ogoshi. 1993. GenCalc Software to facilitate the use of crop models for analyzing field experiments. Agronomy Journal 85:1090-1094
- Hunt, L. A., S. Pararajasingham, J. W. Jones, G. Hoogenboom, D. T. Imamura, and R. M. Ogoshi. 1994. Generating genetic coefficients. *In:* Tsuji, G.Y., G. Uehara and S. Balas (eds). DSSAT v3. Vol. 3-4. University of Hawaii, Honolulu, HI.
- Imamura, D.T. 1994. Creating management files to run crop models & document experiments. *In:* Tsuji, G.Y., G. Uehara and S. Balas (eds). DSSAT v3. Vol. 1-4. University of Hawaii, Honolulu, HI.
- International Benchmark Sites Network for Agrotechnology Transfer Project. 1989. Decision Support System for Agrotechnology Transfer Version 2.1 (DSSAT V2.1). Dept. Agronomy and Soil Sci.; College of Trop. Agr. and Human Resources; University of Hawaii; Honolulu, HI.
- International Benchmark Sites Network for Agrotechnology Transfer Project. 1990. Technical Report 5. Documentation for IBSNAT Crop Model Input and Output Files, Version 1.1: for the Decision Support System for Agrotechnology Transfer (DSSAT V2.1). Dept. Agronomy and Soil Sci.; College of Trop. Agr. and Human Resources; University of Hawaii; Honolulu, HI.
- Jones, J. W., K. J. Boote, G. Hoogenboom, S. S. Jagtap and G. G. Wilkerson. 1989. SOYGRO V5.42: Soybean crop growth simulation model. User's Guide. Florida Agricultural Experiment Station Journal No. 8304; University of Florida; Gainesville, FL. 75 pp.
- Jones, J. W., K. J. Boote, S. S. Jagtap and J. W. Mishoe. 1991. Soybean development. Chapter 5. p. 71-90. *In:* J. Hanks and J. T. Ritchie (eds.). Modeling Soil and Plant Systems. ASA Monograph 31; American Society of Agronomy; Madison, WI.
- Jones, J.W., E. Dayan, L.H. Allen, H.van Keulen, and H. Challa. 1991. A dynamic tomato growth and yield model (TOMGRO). Transactions of the ASAE 34(2):663-

672.

- Jones, J.W., L.A. Hunt, G. Hoogenboom, D.C. Godwin, U. Singh, G.Y. Tsuji, N. Pickering, P.K. Thornton, W.T. Bowen, K.J. Boote and J.T. Ritchie. 1994. Input and output files. *In:* Tsuji, G.Y., G. Uehara and S. Balas (eds). DSSAT v3. Vol. 2-1. University of Hawaii, Honolulu, HI.
- Jones, J. W., S. S. Jagtap, G. Hoogenboom and G. Y. Tsuji. 1990. The structure and function of DSSAT. p. 1-14. *In:* Proceedings of IBSNAT Symposium: Decision Support System for Agrotechnology Transfer. University of Hawaii; Honolulu, HI.
- Matthews, R. B., and L. A. Hunt. 1994. GUMCAS: a model describing the growth of cassava (*Manihot esculenta* L. Crantz). Field Crops Research 36:69-84.
- Otter-Nacke, S., J. T. Ritchie, D. Godwin, and U. Singh. 1991. A User's Guide to CERES Barley V2.10. International Fertilizer Development Center; Muscle Shoals, AL.
- Peart, R. M., J. W. Jones, R. B. Curry, K. J. Boote and L. H. Allen. 1988. Final Report. Impact of climate change on crop yield in the Southeastern USA: A simulation study. Institute of Food and Agricultural Sciences; University of Florida; Gainesville, FL.
- Penman, H. L. 1948. Natural evaporation from open water, bare soil and grass. Proceeding of the Royal Society, London A 193:120-145.
- Pickering, N. B., J.W. Jones, K.J. Boote, G. Hoogenboom, L.H. Allen, Jr. and J.T. Baker. 1993. Modeling soybean growth under climate change conditions. ASAE Paper 93-4510. American Society of Agricultural Engineers, St. Joseph, MI.
- Pickering, N.B., J.W. Hansen, J.W. Jones, C. Wells, H.V.K. Chan and D.C. Godwin.
 1994. WeatherMan: a utility for managing and generating daily weather data.
 Agronomy Journal 86(2):332-337.
- Prasad, H. K., U. Singh, and R. Goenaga. 1991. A simulation model for aroid growth and development. Agronomy Abstracts (1991):77.
- Priestley, C. H. B. and R. J. Taylor. 1972. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Weather Rev. 100:81-92.

- Reid, J.C. and G.L. Greene. 1973. The soybean looper: pupal weight, development time, and consumption of soybean foliage. Florida Entomologist 56(3):203-106.
- Reid, J.C. 1975. Larval development and consumption of soybean foliage by velvetbean caterpillar., anticarsia genumatalis (Hubner) (Lipidotera:Nictuidue) in the laboratory. Ph.D. diss., Univ. of Florida, Gainesville, FL.
- Richardson, C. W. 1985. Weather simulation for crop management models. Transactions of the ASAE 28(5):1602-1606.
- Ritchie, J. T. 1985. A user-oriented model of the soil water balance in wheat. p. 293-305. *In:* E. Fry and T. K. Atkin (eds.). Wheat Growth and Modeling. Plenum Publishing Corporation; NATO-ASI Series.
- Ritchie, J. T., U. Singh, D. C. Godwin and L. Hunt. 1989. A User's Guide to CERES Maize - V2.10. International Fertilizer Development Center; Muscle Shoals, AL.
- Ritchie, J. T., D. C. Godwin and U. Singh. 1990. Soil and weather inputs for the IBSNAT crop models. p. 31-45. *In:* Proceedings of IBSNAT Symposium: Decision Support System for Agrotechnology Transfer. University of Hawaii; Honolulu, HI.
- Singh, U., J. T. Ritchie, and D. C. Godwin. 1993. A User's Guide to CERES Rice -V2.10. International Fertilizer Development Center; Muscle Shoals, AL.
- Singh, U., J. T. Ritchie, and P. K. Thornton. 1991. CERES-CEREAL model for wheat, maize, sorghum, barley, and pearl millet. Agronomy Abstracts (1991):78.
- Szmedra, P.L., R.W. McClendon and M.E. Wetzstein. 1988. Risk efficiency of pest management strategies: a simulation case study. Transactions of the ASAE 31(6):1642-1648.
- Thornton, P.K., G. Hoogenboom, P.W. Wilkens and J.W. Jones. 1994a. Seasonal analysis. *In:* Tsuji, G.Y., G. Uehara and S. Balas (eds.). DSSAT v3. Vol. 3-1. University of Hawaii, Honolulu, Hawaii.
- Thornton, P.K., P.W. Wilkens, G. Hoogenboom and J.W. Jones. 1994b. Sequence analysis. *In:* Tsuji, G.Y., G. Uehara and S. Balas (eds.). DSSAT v3. Vol. 3-2. University of Hawaii, Honolulu, Hawaii.

Crop Models • Cr

APPENDIX A. GENETIC COEFFICIENTS

Information on differences among crop genotypes are input to the model through genotype coefficient files. These files include BACER940.CUL for barley, MZCER940.CUL for maize, MLCER940.CUL for millet, SGCER940.CUL for sorghum, WHCER940.CUL for wheat, BNGRO940.CUL for dry bean, PNGRO940.CUL for peanut, SBGRO940.CUL for soybean, RICER940.CUL for rice, and CSSIM940.CUL for cassava. The coefficients stored in these files allow a single crop growth model to predict differences in development, growth and yield among cultivars when planted in the same environment. These genetic coefficients can be divided into those that relate to vegetative and reproductive development, to vegetative growth, and to reproductive growth.

DSSAT v3 contains a program called Generating Genetic Coefficients, or GenCalc (see Hunt et al., 1993; and Volume 3-4, Hunt et al., 1994, of this book), which can be used to estimate the genetic coefficients for each species and new (or old) cultivars. The model user is therefore referred to this document for further detail about estimating these coefficients. Here, only the coefficients required for each species are defined, and an example for each species is given. Cultivar coefficients available for each species in DSSAT v3 are listed in this appendix.

CERES-BARLEY

Table 9 shows an example of the current cultivars defined for barley. Required genetic coefficients include :

VAR#	Identification code or number for a specific cultivar.
VAR-NAME	Name of cultivar.
ECO#	Ecotype code for this cultivar, points to the Ecotype in the ECO file (currently not used).
P1V	Relative amount that development is slowed for each day of unful- filled vernalization, assuming that 50 days of vernalization is suffi- cient for all cultivars (0-9).

P1D	Relative amount that development is slowed when plant are grown in a photoperiod 1 hour shorter that the optimum (which is considered to be 20 hours) (1-5).
Р5	Relative grain filling duration based on thermal time (degree days above a base temperature of 1 ^o C), where each unit increase above zero adds 40 degree days to an initial value of 300 degree days.
G1	Kernel number per unit weight of stem (less leaf blades and sheaths) plus spike at anthesis $(1/g)$ (1-5).
G2	Kernel filling rate under optimum conditions (mg/day) (1-5).
G3	Non-stressed dry weight of a single stem (excluding leaf blades and sheaths) and spike when elongation ceases (g) (1-5).
PHINT	Phylochron interval; the interval in thermal time (degree days) between successive leaf tip appearances.

TABLE 9. GENETIC COEFFICIENTS FILE FOR CERES-BARLEY. (BACER940.CUL)

*BARLEY GENOTYPE COEFFICIENTS - GECER940 MODEL

	I OBNOTITE COBFFI	CIENTO		10 1101				
! @VAR#	VRNAME	ECO#	P1V	P1D	P5	G1	G2	G3 PHINT
!	V 1 (C 41 2011)	LCO [#]	1	2	3	4	5	6 7
!			-	-	5	-	5	0 ,
	generic (2)	IB0001	.5	4.0	2.0	5.0	3.0	1.0 95.00
	generic (6)	IB0001	.5	4.0	2.0	5.0	3.0	4.0 95.00
	Golden Promise (.5	4.0	2.0	5.0	3.0	2.0 95.00
	Maris Mink (2)	IB0001	.5	3.0	2.0	5.0	3.0	2.0 95.00
	Aramir	IB0001	.5	3.4	2.0	3.0	3.0	3.0 95.00
IB0006	Georgie (2)	IB0001	.5	3.0	2.0	3.0	4.0	2.0 95.00
IB0007	Julia	IB0001	.5	7.0	5.0	3.5	3.0	2.0 95.00
IB0008	Union (2)	IB0001	.5	3.6	2.0	3.0	3.0	2.0 95.00
IB0009	Tellus	IB0001	.5	3.5	2.0	3.0	3.0	3.0 95.00
IB0010	Mona	IB0001	.5	1.5	2.0	3.0	3.0	3.0 95.00
IB0011	Lise	IB0001	.5	1.5	2.0	3.0	3.0	3.0 95.00
IB0012	Igri (2)	IB0001	6.0	3.0	2.0	2.0	4.0	3.0 95.00
IB0013	Video (2)	IB0001	6.0	3.0	2.0	4.0	5.0	2.5 95.00
IB0014	Maris Otter (2)	IB0001	3.0	4.5	2.0	5.0	3.0	2.0 95.00
IB0015	Proctor (2)	IB0001	.5	4.5	5.0	5.2	1.1	.7 95.00
	Berolina (2)	IB0001	.5	4.0	4.0	3.0	3.0	2.0 95.00
	Arena (2)	IB0001	.5	4.5	4.0	3.0	3.0	2.0 95.00
	Deba Abed	IB0001	.5	3.0	3.0	2.5	3.0	3.0 95.00
	Philip (6)	IB0001	.5	3.0	1.5	4.0	3.0	4.0 95.00
	Yokozuna (6)	IB0001	.5	3.0	2.0	3.0	5.0	4.0 95.00
	Andrea (6)	IB0001	6.0	3.0	3.0	3.0	3.0	4.0 95.00
	Marinka (2)	IB0001	6.0	3.0	3.0	3.0	3.0	2.0 95.00
	Catinka (6)	IB0001	6.0	3.0	3.0	3.0	3.0	4.0 95.00
	Sonate (2)	IB0001	6.0	3.0	3.0	3.0	3.0	2.0 95.00
	Tapir (6)	IB0001	6.0	3.0	3.0	3.0	3.0	4.0 95.00
	Franka (6)	IB0001	6.0	3.5	3.0	3.0	3.0	4.0 95.00
	Mammut (6)	IB0001	6.0	3.0	3.0	3.0	3.0	3.0 95.00
	Maris Puma	IB0001	6.0	3.0	3.0	3.0	3.0	3.0 95.00
	Optima (6)	IB0001	6.0	3.0	4.0	3.0	2.5	3.0 95.00
	Maris Badger Shabet	IB0001	.5	7.0	5.0	4.0	5.0	3.0 95.00
	Ord Early	IB0001 IB0001	3.0 3.0	1.0 3.0	5.0 1.0	4.0 2.2	3.0 3.5	2.0 95.00 4.0 95.00
	Ord Mid-Early	IB0001 IB0001	3.0	3.0	1.0	2.2	3.5	4.0 95.00
	Ord Mid-Larry Ord Mid-Late	IB0001 IB0001	3.0	3.0	1.0	2.2	3.5	4.0 95.00
	Ord Late	IB0001 IB0001	3.0	3.0	1.0	2.2	3.5	4.0 95.00
	Azure (6)	IB0001 IB0001	.5	1.0	3.5	4.0	3.0	4.0 95.00
	Bedford (2)	IB0001	.5	1.0	3.5	5.0	3.0	2.0 95.00
	Bumper (6)	IB0001	.5	1.0	3.5	4.0	3.0	4.0 95.00
	Hector (2)	IB0001	.5	1.0	3.5	4.0	3.0	2.0 95.00

IB0055 Larker (6)	IB0001	.5	1.0	3.5	4.0	3.0	4.0 95.00
IB0056 Robust (6)	IB0001	.5	1.0	3.5	4.0	3.0	4.0 95.00
IB0057 Summit (2)	IB0001	.5	1.0	3.5	4.0	3.0	2.0 95.00
IB0058 Bowman (6)	IB0001	.5	1.0	3.5	4.0	3.0	4.0 95.00
IB0059 Hazen (6)	IB0001	.5	1.0	3.5	4.0	3.0	4.0 95.00
IB0101 A. Abiad (2)	IB0001	.5	3.0	4.0	3.5	4.0	2.0 95.00
IB0102 Beecher (6)	IB0001	.5	2.5	4.0	2.2	3.5	4.0 95.00
IB0103 Algerie (2)	IB0001	.5	3.0	3.0	2.0	2.0	2.0 95.00

CERES-MAIZE

Table 10 shows an example of the current cultivars defined for corn. Required genetic coefficients include :

VAR#	Identification code or number for a specific cultivar
VAR-NAME	Name of cultivar
ECO#	Ecotype code for this cultivar, points to the Ecotype in the ECO file (currently not used).
P1	Thermal time from seedling emergence to the end of the juvenile phase (expressed in degree days above a base temperature of 8 ^o C) during which the plant is not responsive to changes in photoperi- od.
P2	Extent to which development (expressed as days) is delayed for each hour increase in photoperiod above the longest photope- riod at which development proceeds at a maximum rate (which is considered to be 12.5 hours).
P5	Thermal time from silking to physiological maturity (expressed in degree days above a base temperature of 8 ^o C).
G2	Maximum possible number of kernels per plant.
G3	Kernel filling rate during the linear grain filling stage and under optimum conditions (mg/day).
PHINT	Phylochron interval; the interval in thermal time (degree days) between successive leaf tip appearances.

TABLE 10. GENETIC COEFFICIENTS FILE FOR CERES-MAIZE. (MZCER940.CUL)

*MAIZE GENOTYPE COEFFICIENTS - GECER940 MODEL

	GENOTITE COEFFIC.			10 101				
! @VAR#	VRNAME	ECO#	P1	P2	P5	G2	G3	PHINT
!			1	2	3		5	6
	CORNL281	IB0001		_				
IB0002		IB0001						
IB0003	LG11	IB0001						
	F7 X F2	IB0001						
IB0005	PIO 3995	IB0001	130.0	0.300	685.0	825.4	8.60	75.00
IB0006	INRA	IB0001	135.0	0.000	685.0	825.4	10.00	75.00
IB0007	EDO	IB0001	135.0	0.300	685.0	825.4	10.40	75.00
IB0008	A654 X F2	IB0001	135.0	0.000	685.0	825.4	10.00	75.00
IB0009	DEKALB XL71	IB0001	140.0	0.300	685.0	825.4	10.50	75.00
IB0010	F478 X W705A	IB0001	140.0	0.000	685.0	825.4	10.00	75.00
IB0011	DEKALBXL45	IB0001	150.0	0.400	685.0	825.4	10.15	75.00
IB0012	PIO 3382	IB0001	160.0	0.700	890.0	750.0	8.50	75.00
IB0013	В59*ОН43	IB0001	162.0	0.800	685.0	784.0	6.90	75.00
IB0014	F16 X F19	IB0001	165.0	0.000	685.0	825.4	10.00	75.00
IB0015	WASHINGTON	IB0001	165.0	0.400	715.0	750.0	11.00	75.00
IB0016	B14XOH43	IB0001	172.0	0.300	685.0	825.4	8.50	75.00
IB0017	R1*(N32*B14)	IB0001	172.0	0.800	685.0	825.4	10.15	75.00
IB0018	B60*R71	IB0001	172.0	0.800	685.0	710.4	7.70	75.00
IB0019	WF9*B37	IB0001	172.0	0.800	685.0	825.4	10.15	75.00
IB0020	B59*C103	IB0001	172.0	0.800	685.0	825.4	10.15	75.00
IB0021	Garst 8702	IB0001	175.0	0.200	960.0	778.0	6.00	75.00
	B14*C103	IB0001						
	B14*C131A	IB0001						
	PIO 3720	IB0001						
	WASH/GRAIN-1	IB0001						
	A632 X W117	IB0001						
	Garst 8750	IB0001						
	TAINAN-11	IB0001						
	PIO 3541	IB0001						
	PIO 3707	IB0001						
	PIO 3475	IB0001						75.00
	PIO 3382	IB0001						75.00
	PIO 3780	IB0001						75.00
	PIO 3780*	IB0001						75.00
IB0035 IB0036	McCurdy 84aa	IB0001 IB0001						75.00 75.00
	SWEET CORN	IB0001						
	Garst 8555	IB0001						75.00
	PIO 3901	IB0001						75.00
	B8*153R	IB0001						75.00
10010		TFOOOT	210.0	5.500	,00.0	5,5.0	0.00	,

DSSAT v3, Volume 2 • DSSAT v3,

IB0041 Garst 8808	IB0001 220.0 0.400 780.0 780.0 8.50 75.00
IB0042 B73 X MO17	IB0001 220.0 0.520 880.0 730.0 10.00 75.00
IB0043 PIO 511A	IB0001 220.0 0.300 685.0 645.0 10.50 75.00
IB0044 W69A X F546	IB0001 240.0 0.300 685.0 825.4 10.00 75.00
IB0045 A632 X VA26	IB0001 240.0 0.300 685.0 825.4 10.00 75.00
IB0046 W64A X W117	IB0001 245.0 0.000 685.0 825.4 8.00 75.00
IB0047 PIO 3147	IB0001 255.0 0.760 685.0 834.0 10.00 75.00
IB0048 WF9*B37	IB0001 260.0 0.800 710.0 825.4 6.50 75.00
IB0049 NEB 611	IB0001 260.0 0.300 720.0 825.0 9.00 75.00
IB0050 PV82S	IB0001 260.0 0.500 750.0 600.0 8.50 75.00
IB0051 PV76S	IB0001 260.0 0.500 750.0 600.0 8.50 75.00
IB0052 PIO 3183	IB0001 260.0 0.500 750.0 600.0 8.50 75.00
IB0053 CESDA-28	IB0001 260.0 0.500 669.0 780.0 7.10 75.00
IB0054 B14*OH43	IB0001 265.0 0.800 665.0 780.0 6.90 75.00
IB0055 MCCURDY 6714	IB0001 265.0 0.300 825.0 825.4 9.80 75.00
IB0056 FM 6	IB0001 276.0 0.520 867.0 616.0 10.70 75.00
IB0057 TOCORON-3	IB0001 276.0 0.520 867.0 600.0 8.12 75.00
IB0058 NC+59	IB0001 280.0 0.300 750.0 825.0 10.00 75.00
IB0059 H6	IB0001 310.0 0.300 685.0 825.4 10.00 75.00
IB0060 H610(UH)	IB0001 300.0 0.520 920.0 580.0 6.40 75.00
IB0061 PB 8	IB0001 300.0 0.520 990.0 400.0 7.00 75.00
IB0062 B56*C131A	IB0001 318.0 0.500 700.0 805.0 6.40 75.00
IB0063 PIO X 304C	IB0001 320.0 0.520 940.0 625.0 6.00 75.00
IB0064 H.OBREGON	IB0001 360.0 0.800 685.0 825.4 10.15 75.00
IB0065 SUWAN-1	IB0001 380.0 0.600 780.0 750.0 7.00 75.00

CERES-MILLET

Table 11 shows an example of the current cultivars defined for millet. Required genetic coefficients include :

VAR#	Identification code xor number for a specific cultivar
VAR-NAME	Name of cultivar
ECO#	Ecotype code for this cultivar, points to the Ecotype in the ECO file (currently not used).
P1	Thermal time from seedling emergence to the end of the juvenile phase (expressed in degree days above a base temperature of 10 ^o C) during which the plant is not responsive to changes in pho- toperiod.
P2O	Critical photoperiod or the longest day length (in hours) at which development occurs at a maximum rate. At values greater than P2O, the rate of development is reduced.
P2R	Extent to which phasic development leading to panicle initiation (expressed in degree days) is delayed for each hour increase in photoperiod above P2O.
P5	Thermal time (degree days above a base temperature of 10 ^o C) from beginning of grain filling (3-4 days after flowering) to physiological maturity.
G1	Scaler for relative leaf size.
G4	Scaler for partitioning of assimilates to the panicle (head).
PHINT	Phylochron interval; the interval in thermal time (degree days) between successive leaf tip appearances.

TABLE 11. GENETIC COEFFICIENTS FILE FOR CERES-MILLET. (MLCER940.CUL)

*MILLET GENOTYPE COEFFICIENTS - GECER940 MODEL													
!													
!													
@VAR# VRNAME	ECO#	Pl	P20	P2R	P5	Gl	G4	PHINT					
!		1	2	3	4	5	б	7					
IB0033 BJ104	IB0001	120.0	13.40	145.0	340.0	1.50	1.00	95.00					
IB0034 CZH-859	IB0001	170.0	12.10	138.0	420.0	2.13	0.50	95.0					
IB0035 CZP-87	IB0001	136.0	12.40	130.0	370.0	2.10	0.50	95.00					
IB0036 CZMP-2	IB0001	135.0	12.60	140.0	370.0	2.00	0.50	95.00					
IB0037 MBH-110	IB0001	140.0	12.50	148.0	365.0	2.12	0.50	95.00					
IB0038 RCB-2	IB0001	136.0	12.10	135.0	365.0	2.14	0.50	95.00					
IB0039 CZP-78	IB0001	136.0	12.10	125.0	362.0	2.00	0.50	95.00					
IB0040 CZP-85	IB0001	142.0	12.30	130.0	380.0	2.15	0.50	95.00					
IB0041 WCC-75	IB0001	160.0	12.00	142.0	422.0	2.10	0.50	95.00					
IB0042 CZP-84	IB0001	138.0	12.20	128.0	360.0	2.30	0.50	95.00					
IB0043 CZH-83-J1	IB0001	136.0	12.60	130.0	350.0	2.30	0.50	95.00					
IB0044 CIVT	IB0001	120.0	12.00	142.0	590.0	1.00	0.50	95.00					

CERES-Sorghum

Table 12 shows an example of the current cultivars defined for sorghum. Required genetic coefficients include :

VAR#	Identification code or number for a specific cultivar.
VAR-NAME	Name of cultivar.
ECO#	Ecotype code for this cultivar, points to the Ecotype in the ECO file (currently not used).
P1	Thermal time from seedling emergence to the end of the juvenile phase(expressed in degree days above a base temperature of 8 ^o C) during which the plant is not responsive to changes in photoperiod.
P2O	Critical photoperiod or the longest day length (in hours) at which development occurs at a maximum rate. At values higher than P2O, the rate of development is reduced.
P2R	Extent to which phasic development leading to panicle initiation (expressed in degree days) is delayed for each hour increase in photoperiod above P2O.
P5	Thermal time (degree days above a base temperature of 8 ^o C) from beginning of grain filling (3-4 days after flowering) to physiological maturity.
G1	Scaler for relative leaf size.
G2	Scaler for partitioning of assimilates to the panicle (head).
PHINT	Phylochron interval; the interval in thermal time (degree days) between successive leaf tip appearances.

TABLE 12. GENETIC COEFFICIENTS FILE FOR CERES-SORGHUM. (SGCER940.CUL)

*SORGHUM GENOTYPE COEFFICIENTS - GECER940 MODEL

!

:									
@VAR#	VRNAME	ECO#	Pl	P20	P2R	P5	Gl	G2	PHINT
!			1	2	3	4	5	б	7
IB0001	RIO	IB0001	430.0	11.60	24.0	540.0	.0	6.0	49.00
IB0002	9188	IB0001	393.0	13.00	23.0	540.0	.0	6.0	49.00
IB0003	BRANDES	IB0001	374.0	11.00	116.0	540.0	.0	6.0	49.00
IB0004	MN1500	IB0001	495.0	11.80	139.0	540.0	.0	6.0	49.00
IB0005	HEGARI	IB0001	273.0	11.50	136.0	540.0	.0	6.0	49.00
IB0006	100M	IB0001	291.0	11.00	127.0	540.0	.0	6.0	49.00
IB0007	80M	IB0001	337.0	12.60	262.0	540.0	.0	6.0	49.00
IB0008	60M	IB0001	337.0	12.80	290.0	540.0	.0	6.0	49.00
IB0009	SM100	IB0001	365.0	13.00	45.0	540.0	.0	6.0	49.00
IB0010	SM80	IB0001	356.0	12.00	74.0	540.0	.0	6.0	49.00
IB0011	SM60	IB0001	365.0	12.20	74.0	540.0	.0	6.0	49.00
IB0012	REDLON	IB0001	393.0	12.50	30.0	540.0	.0	6.0	49.00
IB0013	CAPROCK	IB0001	393.0	12.80	84.0	540.0	.0	6.0	49.00
IB0014	ATx378XRTx7000	IB0001	384.0	11.30	24.0	540.0	.0	6.0	49.00
IB0015	ATx623	IB0001	380.0	13.00	35.0	540.0	.0	6.0	49.00
IB0016	RTx430	IB0001	400.0	13.00	123.0	540.0	.0	6.0	49.00
IB0017	ATx623XRTx430	IB0001	390.0	13.00	35.0	540.0	.0	6.0	49.00
IB0018	BTx3197	IB0001	411.0	13.00	108.0	540.0	.0	6.0	49.00
IB0019	RTx7078	IB0001	421.0	14.40	221.0	540.0	.0	6.0	49.00
IB0020	TX 610	IB0001	180.0	16.50	1.0	580.0	22.0	6.0	49.00
IB0021	WHEATLAND	IB0001	365.0	12.50	30.0	540.0	.0	6.0	49.00
IB0022	ATx399XRTx430	IB0001	393.0	12.80	40.0	540.0	.0	6.0	49.00
IB0023	ATx378XRTx430	IB0001	411.0	12.50	20.0	540.0	.0	6.0	49.00
IB0024	ATx623XRTx7000	IB0001	374.0	13.00	14.0	540.0	.0	6.0	49.00
IB0025	38M	IB0001	291.0	13.00	12.0	540.0	.0	6.0	49.00
IB0026	CSH-1	IB0001	410.0	13.60	40.0	540.0	3.0	5.5	49.00
IB0027	DE KALB 46	IB0001	325.0	15.50	30.0	540.0	9.0	6.0	49.00
IB0028	PIONEER 8333	IB0001	325.0	15.50	30.0	540.0	11.0	6.0	49.00
IB0029	DK	IB0001	200.0	15.50	12.0	540.0	.0	6.0	49.00
IB0030	PIONEER 8515	IB0001	275.0	15.50	30.0	500.0	.0	6.0	49.00
IB0031	RS 626	IB0001	300.0	15.50	30.0	400.0	.0	6.0	49.00
IB0032	DK- E57	IB0001			30.0	450.0	13.0	6.0	49.00
IB0040	RS610	IB0001	460.0	12.50	90.0	600.0	5.0	6.0	49.00
IB0041	NK212	IB0001	420.0	15.50	30.0	500.0	13.0	6.0	49.00
IB0042	PIONEER 846	IB0001	480.0	12.50	190.0	650.0	5.0	5.0	49.00
IB0043	CSH-6	IB0001	410.0	13.60	40.0	510.0	7.0	4.5	49.00
IB0044	CSH-6	IB0001	320.0	13.50	180.0	540.0	7.0	5.5	49.00
IB0046	M-35-1	IB0001	320.0	14.00	45.6	556.0	15.0	4.5	49.00
IB0047	SPV-504	IB0001	310.0	13.00	35.0	554.0	15.0	4.5	49.00
IB0048	CSH-5	IB0001				490.0	10.0	5.5	49.00
IB0049	CSH-9	IB0001	225.0	13.50	45.1	573.0	10.0		49.00
IB0050	SPH-388	IB0001	232.0	12.50	43.7	590.0	10.0	4.5	49.00

DSSAT v3, Volume 2 • DSSAT v3,

CERES-WHEAT

Table 13 shows an example of the current cultivars defined for wheat. Required genetic coefficients include :

VAR#	Identification code or number for a specific cultivar.
VAR-NAME	Name of cultivar.
ECO#	Ecotype code for this cultivar, points to the Ecotype in the ECO file (currently not used).
P1V	Relative amount that development is slowed for each day of unfulfilled vernalization, assuming that 50 days of vernalization is sufficient for all cultivars.
P1D	Relative amount that development is slowed when plants are grown in a photoperiod 1 hour shorter than the optimum (which is considered to be 20 hours).
P5	Relative grain filling duration based on thermal time (degree days above a base temperature of 1^{0} C), where each unit increase above zero adds 20 degree days to an initial value of 430 degree days.
G1	Kernel number per unit weight of stem (less leaf blades and sheaths) plus spike at anthesis $(1/g)$.
G2	Kernel filling rate under optimum conditions (md/dy).
G3	Non-stressed dry weight of a single stem (excluding leaf blades and sheaths) and spike when elongation ceases (g).
PHINT	Phylochron interval; the interval in thermal time (degree days) between successive leaf tip appearances.

TABLE 13. GENETIC COEFFICIENTS FILE FOR CERES-WHEAT. (WHCER940.CUL)

*WHEAT GENOTYPE COEFFICIENTS - GECER940 MODEL

!

:								
@VAR#	VRNAME	ECO#	PlV	P1D	P5	Gl	G2	G3 PHINT
!			1	2	3	4	5	6 7
IB0001	CONDO (DURUM)	IB0001	.5	1.5	2.0	5.3	1.9	1.9 95.00
IB0002	WARED	IB0001	.5	2.7	2.0	5.0	1.8	1.9 95.00
IB0003	WALDRON	IB0001	.5	2.7	2.0	5.0	1.7	1.9 95.00
IB0004	ELLAR	IB0001	.5	2.7	2.0	4.7	1.8	1.9 95.00
IB0005	BUTTE	IB0001	.5	2.7	2.0	2.8	2.4	1.9 95.00
IB0006	WARD (DURUM)	IB0001	.5	1.5	2.0	3.6	1.6	1.9 95.00
IB0030	RONGOTEA	IB0001	.5	2.7	2.0	1.6	3.9	1.7 95.00
IB0031	KOPARA	IB0001	.5	2.7	2.0	1.6	3.9	1.7 95.00
IB0032	BOUNTY	IB0001	6.0	3.7	2.1	3.2	2.5	1.7 95.00
IB0033	MOULIN	IB0001	6.0	3.9	2.1	3.8	2.1	1.8 95.00
IB0034	AVALON	IB0001	6.0	4.0	2.0	3.0	2.7	1.7 95.00
IB0178	CENTURK	IB0001	6.0	2.5	2.0	4.3	1.7	1.2 95.00
IB0221	HERON	IB0001	.5	2.3	2.0	2.0	2.0	4.0 95.00
IB0222	SHERPA	IB0001	.5	3.1	1.0	3.5	2.5	5.0 95.00
IB0223	GABO	IB0001	.5	3.1	2.5	1.8	3.0	5.0 95.00
IB0224	BENCUBBIN	IB0001	.5	4.5	2.5	1.2	3.0	4.9 95.00
IB0326	GAMENYA	IB0001	.5	3.3	6.0	4.6	2.7	4.9 95.00
IB0333	SST	IB0001	3.0	3.0	4.0	4.4	4.9	1.7 95.00
IB0368	TRIUMPH	IB0001	6.0	1.9	2.0	2.8	1.6	1.9 95.00
IB0411	CARIBO	IB0001	6.0	4.4	2.0	4.0	3.1	2.6 95.00
IB0446	IMPROVED TRIUMPH	IB0001	6.0	1.3	2.0	2.8	4.1	1.9 95.00
IB0459	LANCER	IB0001	6.0	1.7	2.0	2.8	1.6	1.9 95.00
IB0460	LEEDS	IB0001	6.0	2.7	2.0	2.8	1.6	1.9 95.00
IB0469	STURDY	IB0001	6.0	1.0	2.0	3.9	2.3	1.5 95.00
IB0470	NOR.KING #812	IB0001	6.0	1.0	2.0	3.9	2.3	1.9 95.00
IB0487	SCOUT 66	IB0001	6.0	2.4	2.0	3.8	2.4	1.3 95.00
IB0488	NEWTON	IB0001	6.0	2.5	3.5	3.4	2.6	1.4 95.00
IB0489	NEWANA	IB0001	.5	4.5	3.0	4.8	3.3	1.7 95.00
IB0494	GAGE	IB0001	6.0	2.2	2.0	2.8	1.6	1.9 95.00
IB0495	KOLIBRI	IB0001	.5	3.3	2.5	4.0	3.1	2.1 95.00
IB0496	KLEIBER	IB0001	.5	3.0	3.0	3.6	3.1	2.1 95.00
IB0500	TAM 105	IB0001	6.0	3.3	2.5	2.8	3.0	1.8 95.00
IB0501	IMIA 66	IB0001	6.0	2.7	2.0	2.8	1.6	1.9 95.00
IB0510	PAHA	IB0001	6.0	2.7	2.0	2.8	1.6	1.9 95.00
IB0515	ROLETTE	IB0001	6.0	2.7	2.0	2.8	1.6	1.9 95.00
IB0519	WANSER	IB0001	6.0	2.7	2.0	3.0	3.1	1.9 95.00
IB0536	COULEE	IB0001	6.0	2.7	2.0	2.8	1.6	1.9 95.00
IB0541	TAM W 101	IB0001	3.0	3.0	2.5	4.1	3.0	1.8 95.00
IB0542	NUGAINES	IB0001	6.0	2.7	3.0	5.5	3.6	2.3 95.00
IB0543	PAWNEE	IB0001	6.0	2.6	2.0	2.8	1.6	1.9 95.00
IB0547	CLOUD	IB0001	6.0	2.0	2.0	2.8	1.6	1.9 95.00

	TRISON	IB0001	6.0	2.7	2.0	2.8	1.6	1.9 95.00
	ARTHUR	IB0001 IB0001	6.0	2.7	2.0	4.2	2.1	1.9 95.00
IB0552	-	IB0001 IB0001	3.0	2.0	4.5	4.3	3.1	1.9 95.00
	FRANKENMUTH	IB0001 IB0001	6.0	2.0	2.0	3.8	1.6	1.9 95.00
	ISRAEL SW	IB0001 IB0001	.5	3.0	4.5	2.9	4.7	2.6 95.00
IB0555 IB0563		IB0001 IB0001	6.0	3.5	2.0	3.2	3.0	1.9 95.00
IB0503		IB0001 IB0001	6.0	3.1	2.0 2.5	3.9	1.6	1.7 95.00
IB0599 IB0610		IB0001 IB0001	6.0	2.7	2.0			1.9 95.00
				2.9		2.8	1.6	1.9 95.00
	BEZOSTAYA	IB0001 IB0001	6.0	2.9	5.0	4.3	3.1	1.9 95.00
	MIRONOVSKAYA		6.0		5.0	4.8	3.1	
	ROUGHRIDER	IB0001	6.0	2.9	5.0	4.8	3.1	1.9 95.00
	ESTANZ. DORADO	IB0001	1.0	4.0	2.0	3.0	3.0	3.0 95.00
IB1001		IB0001	6.0	2.7	2.0	1.3	1.6	1.9 95.00
	CAPELLE DESPREZ	IB0001	6.0	4.2	2.0	1.7	2.9	3.7 95.00
	JUFY 2	IB0001	6.0	2.7	2.0	2.8	1.6	1.9 95.00
IB1004		IB0001	6.0	3.5	2.0	4.8	2.8	4.4 95.00
	DONATA	IB0001	6.0	3.5	2.0	4.4	3.0	1.7 95.00
	MARIS HOBBIT	IB0001	6.0	2.7	2.0	3.6	3.1	3.6 95.00
	MARIS HUNTSMAN2	IB0001	6.0	2.9	2.0	3.9	3.9	2.2 95.00
	TALENT	IB0001	6.0	3.3	3.5	3.5	3.8	1.9 95.00
	HYSLOP	IB0001	6.0	2.7	2.0	3.0	1.6	1.9 95.00
IB1010		IB0001	6.0	2.7	2.0	2.8	1.3	1.9 95.00
	ARMINDA	IB0001	6.0	2.7	2.0	4.3	4.6	1.9 95.00
	CAPITOLE	IB0001	6.0	3.2	2.5	3.1	3.6	1.0 95.00
IB1013		IB0001	6.0	3.5	3.5	3.2	3.3	1.9 95.00
	COURTOT	IB0001	6.0	3.3	2.5	3.4	3.1	1.0 95.00
	MARIS FUNDEN	IB0001	6.0	3.5	4.0	2.8	2.7	1.9 95.00
	STEPHENS	IB0001	6.0	3.3	2.5	3.5	6.8	2.7 95.00
	YAMHILL	IB0001	6.0	3.3	2.5	3.9	5.5	2.8 95.00
	MARIS HUNTSMAN	IB0001	6.0	3.5	4.0	3.9	3.0	2.2 95.00
	HD2160(INDIA)	IB0001	.5	3.3	2.5	4.0	2.9	2.4 95.00
IB1019		IB0001	6.0	3.3	2.5	4.3	4.9	2.6 95.00
	NIMBUS	IB0001	6.0	3.3	2.5	4.6	4.0	2.1 95.00
	SCHIROKKO	IB0001	.5	3.3	2.5	4.7	3.4	2.0 95.00
IB1022		IB0001	.5	3.3	2.5	4.0	3.1	2.1 95.00
IB1023		IB0001	.5	3.3	2.5	4.8	3.3	2.1 95.00
	MARIS MARDLER	IB0001	6.0	3.3	2.5	4.8	3.3	2.1 95.00
	STARKEII	IB0001	6.0	3.3	1.0	4.0	2.4	2.1 95.00
	MANITOU	IB0001	.5	3.2	.0	4.9	1.8	1.7 95.00
	MEXIPAK	IB0001	.5	3.0	2.0	2.9	3.0	1.7 95.00
	SONALIKA	IB0001	.5	1.8	3.5	4.0	1.9	1.7 95.00
	NOVI SAD	IB0001	.5	3.5	2.0	4.0	1.3	1.7 95.00
IB2001		IB0001	.5	3.4	2.0	3.5	2.7	4.4 95.00
	COKER 6815	IB0001	6.0	1.0	2.0	4.1	3.1	1.9 95.00
	NADADORES	IB0001	.5	2.7	2.0	2.8	1.6	1.9 95.00
	PENJAMO	IB0001	.5	2.7	2.0	2.8	1.6	1.9 95.00
IB2011	PLAINSMAN	IB0001	6.0	2.7	2.0	2.8	1.6	1.9 95.00

IB2012 PRODURA	IB0001	.5	3.1	2.5	3.3	3.3	5.3 95.00
IB2013 TAMU	IB0001	6.0	2.7	2.0	2.8	1.6	1.9 95.00
IB2014 WALDRON	IB0001	.5	1.5	2.0	2.8	1.6	1.9 95.00
IB2123 EGRET	IB0001	.5	3.0	2.0	2.6	3.3	2.7 95.00
IB2124 WW33G	IB0001	.5	3.0	2.0	3.7	1.8	2.4 95.00
IB4000 SQUAREHD MASTER	IB0001	6.0	4.7	2.0	1.1	2.2	1.9 95.00
IB4001 JUFY1	IB0001	.5	3.0	2.0	1.8	2.5	3.9 95.00
IB9800 FREDERICK	IB0001	6.0	2.7	2.0	3.8	1.6	1.9 95.00

CROPGRO-DRY BEAN

Table 14 shows an example of the current cultivars defined for dry bean. Required genetic coefficients include :

VARTY	Also VAR#; the identification code or number for a specific cultivar.
VRNAME	Name of cultivar.
ECONO	Also ECO#; the ecotype code for this cultivar, points to the Ecotype in the ECO (BNGRO940.ECO) file.
CSDVAR	Also CSDL; critical daylength below which reproductive develop- ment proceeds unaffected by daylength, and above which devel- opment rate is reduced in proportion to hours above CSDVAR (h).
PPSEN	Slope of relative rate of development for daylengths above CSD-VAR, or sensitivity to photoperiod (1/h).
PH2T5	Also EM-FL; the time from end of juvenile phase to first flower in photothermal days, which is equal to the minimum duration under optimal temperature and photoperiod (photothermal days).
PHTHRS(6)	Also FL-SH; the time from first flower to first pod greater than 0.5 cm in photothermal days, which is equal to the minimum duration under optimal temperature and photoperiod (photothermal days).
PHTHRS(8)	Also FL-SD the time from first flower to first seed in photothermal days, which is equal to the minimum duration under optimal temperature and photoperiod (photothermal days).
PHTHRS(10)	Also SD-PM the time from first seed to physiological maturity in photo-thermal days, which is equal to the minimum duration under optimal temperature and photoperiod (photothermal days).
PHTHRS(13)	Also FL-LF the time from first flower to end of leaf growth in photo-thermal days, which is equal to the minimum duration under optimal temperature and photoperiod (photothermal days).

LFMAX	Maximum leaf photosynthesis rate at saturated light level, optimal temperature (micromol ($CO_2 / m^2 s$))
SLAVAR	Specific leaf area (SLA) for new leaves during peak vegetative growth for cultivar I, modified by environmental factors (cm^2/g) .
SIZLF	Maximum size of fully expanded leaf on the plant under standard growing conditions (3 leaflets), cm ²
XFRUIT	Maximum fraction of daily available gross photosynthesis (PG) which is allowed to go to seeds plus shells for cultivar I, varies from 0 - 1.
WTPSD	Maximum weight per seed under non-limiting substrate (g).
SFDUR	Seed filling duration for a cohort of seed (photothermal days).
SDPDVR	Also SDPDV; average seed per pod under stnadard growing con- ditions.
PODUR	Photothermal days for cultivar to add full pod load under optimal conditions, used to compute rate of pod and flower addition.

Crop Models • Cr

TABLE 14. GENETIC COEFFICIENTS FILE FOR CROPGRO-DRY BEAN. (BNGRO940.CUL)

*DRYBEAN GENOTYPE COEFFICIENTS - CRGR094 MODEL

@VAR# VRNAME	ECO#	CSDL	PPSEN	EM-FL	FL-SH	FL-SD	SD-PM	FL-LF	LFMAX	SLAVR	SIZLF	XFRT	WIPSD	SFDUR	SDPDV	PODUR
!		1	2	3	4	5	б	7	8	9	10	11	12	13	14	15
990006 MesoAm Hab 2 & 3	MESIND	12.17	0.000	32.0	2.0	9.0	24.00	18.00	1.00	320.	133.0	1.00	0.230	14.0	5.20	8.0
990001 Andean Habit 1	ANDDET	12.17	0.050	24.5	2.0	11.0	25.50	16.00	1.00	295.	133.0	1.00	0.550	11.0	3.50	3.5
990002 Andean Habit 2	ANDIND	12.17	0.050	26.0	4.0	11.0	26.50	18.00	1.00	350.	133.0	1.00	0.600	11.0	3.50	3.5
990003 Andean Habit 3	ANDIND	12.17	0.050	30.0	4.5	9.5	28.00	22.00	1.00	350.	133.0	1.00	0.650	20.0	4.20	5.0
990004 Andean Habit 4	ANDIND	12.17	0.050	34.0	5.0	9.0	34.00	34.00	1.00	350.	133.0	1.00	0.650	22.0	5.20	6.0
990005 Meso Amer. Hab.1	MESDET	12.17	0.000	27.0	4.0	9.0	22.00	16.00	1.00	350.	133.0	1.00	0.230	16.0	5.20	5.0
990007 Mex Highland H 3	MEXHIL	12.17	0.050	27.0	4.0	8.0	26.00	20.00	1.00	350.	133.0	1.00	0.440	17.0	3.20	5.0
IB0001 Porillo Sintet	MESIND	13.17	0.008	32.0	2.0	9.0	23.00	18.00	1.00	320.	133.0	1.00	0.210	15.0	5.20	10.0
IB0002 BAT 477+	MESIND	12.17	0.000	32.0	2.0	9.0	24.00	18.00	1.00	320.	133.0	1.00	0.230	14.0	5.20	8.0
IB0003 Seafarer	MESDET	12.17	0.000	25.0	5.0	09.0	23.00	22.00	1.00	350.	133.0	1.00	0.180	17.0	5.00	8.0
IB0004 C-20	MESIND	12.17	0.000	32.0	5.0	09.0	24.00	22.00	1.00	350.	133.0	1.00	0.170	17.0	5.00	8.0
IB0005 BAT 881	MESIND	12.17	0.000	33.0	2.0	9.0	24.00	18.00	1.00	300.	133.0	1.00	0.230	14.0	5.20	8.0
IB0006 ICTA-Ostua	MESIND	12.17	0.000	27.0	3.0	8.0	23.00	22.00	1.00	295.	133.0	1.00	0.200	17.0	5.40	5.0
IB0007 Rabia de Gato	MESIND	12.17	0.040	24.0	3.0	8.0	21.00	22.00	1.00	295.	133.0	1.00	0.180	17.0	5.40	5.0
IB0008 TURBO-III	MESIND	12.17	0.050	30.0	4.0	9.0	23.00	22.00	1.00	295.	133.0	1.00	0.180	17.0	4.00	5.0
IB0010 Carioca (G4017)	MESIND	12.17	0.000	33.5	3.0	11.0	24.00	18.00	0.90	270.	133.0	1.00	0.250	15.0	5.00	6.5
IB0011 Isabella	ANDDET	12.17	0.000	25.0	3.0	8.0	20.00	9.00	1.00	295.	133.0	1.00	0.290	15.0	3.50	10.0
IB0012 Manitou	ANDDET	12.17	0.000	28.0	3.0	8.0	23.00	9.00	1.00	295.	133.0	1.00	0.550	15.0	3.50	10.0
IB0013 Redkloud	ANDDET	12.17	0.000	24.5	2.0	11.0	25.50	7.00	1.00	305.	133.0	1.00	0.550	11.0	3.50	3.5
IB0014 Canadian Wonder	ANDDET	12.17	0.000	24.5	2.0	11.0	25.50	7.00	1.00	295.	133.0	1.00	0.550	11.0	3.50	3.5

CROPGRO-PEANUT

Table 15 shows an example of the current cultivars defined for peanut. Required genetic coefficients include :

- VARTY Also VAR#; the identification code or number for a specific cultivar.
- VRNAME Name of cultivar.
- ECONO Also ECO#; the ecotype code for this cultivar, points to the Ecotype in the ECO (PNGRO940.ECO) file.
- CSDVAR Also CSDL; critical daylength below which reproductive development proceeds unaffected by daylength, and above which development rate is reduced in proportion to hours above CSDVAR (h).
- PPSEN Slope of relative rate of development for daylengths above CSD-VAR, or sensitivity to photoperiod (1/h).
- PH2T5 Also EM-FL; the time from end of juvenile phase to first flower in photothermal days, which is equal to the minimum duration under optimal temperature and photoperiod (photothermal days).
- PHTHRS(6) Also FL-SH; the time from first flower to first peg, in photothermal days, which is equal to the minimum duration under optimal temperature and photoperiod (photothermal days).
- PHTHRS(8) Also FL-SD the time from first flower to first seed in photothermal days, which is equal to the minimum duration under optimal temperature and photoperiod (photothermal days).
- PHTHRS(10) Also SD-PM the time from first seed to physiological maturity in photothermal days, which is equal to the minimum duration under optimal temperature and photoperiod (photothermal days).
- PHTHRS(13) Also FL-LF the time from first flower to end of leaf growth in photothermal days, which is equal to the minimum duration under optimal temperature and photoperiod (photothermal days).

LFMAX	Maximum leaf photosynthesis rate at saturated light level, optimal temperature (micromol (CO ₂ / m^2s))
SLAVAR	Specific leaf area (SLA) for new leaves during peak vegetative growth for cultivar I, modi-fied by environmental factors (cm ² /g).
SIZLF	Maximum size of fully expanded leaf on the plant under standard growing conditions (3 leaflets), cm ²
XFRUIT	Maximum fraction of daily available gross photosynthesis (PG) which is allowed to go to seeds plus shells for cultivar I, varies from 0 - 1.
WTPSD	Maximum weight per seed under non-limiting substrate (g).
SFDUR	Seed filling duration for a cohort of seed (photothermal days).
SDPDVR	Also SDPDV; average seed per pod under stnadard growing con- ditions.
PODUR	Photothermal days for cultivar to add full pod load under optimal conditions, used to compute rate of pod and flower addition.

TABLE 15. GENETIC COEFFICIENTS FILE FOR CROPGRO-PEANUT. (PNGR094.CUL)

*PEANUT GENOTYPE COEFFICIENTS - CRGR0940 MODEL

@VAR# VRNAME	ECO# CS	OL PPSEN	EM-FL	FL-PG	FL-SD	SD-PM	FL-LF	LFMAX	SLAVR	SIZLF	XFRT	WTPSD	SFDUR	SDPDV	PODUR
!		1 2	3	4	5	б	7	8	9	10	11	12	13	14	15
990001 V EARLY SPANISH	PN0006 11.	34 0.00	18.4	6.5	17.0	83.70	73.20	1.30	230.	20.0	0.95	0.575	37.0	1.70	35.0
990002 EARLY VALENCIA	PN0007 11.	34 0.00	18.4	6.5	17.0	83.70	73.20	1.30	230.	20.0	0.95	0.575	37.0	1.70	35.0
990003 MEDIUM VIRGINIA	PN0005 11.	34 0.00	18.4	6.5	17.0	83.70	73.20	1.30	230.	20.0	0.95	0.575	37.0	1.70	35.0

CROPGRO-Soybean

Table 16 shows an example of the current cultivars defined for soybean. Required genetic coefficients include :

VARTY	Also VAR#; the identification code or number for a specific cultivar.
VRNAME	Name of cultivar.
ECONO	Also ECO#; the ecotype code for this cultivar, points to the Ecotype in the ECO (SBGRO940.ECO) file.
CSDVAR	Also CSDL; critical daylength below which reproductive develop- ment proceeds unaffected by daylength, and above which develop- ment rate is reduced in proportion to hours above CSDVAR (h).
PPSEN	Slope of relative rate of development for daylengths above CSD-VAR, or sensitivity to photoperiod (1/h).
PH2T5	Also EM-FL; the time from end of juvenile phase to first flower in photothermal days, which is equal to the minimum duration under optimal temperature and photoperiod (photothermal days).
PHTHRS(6)	Also FL-SH; the time from first flower to first pod greater than 0.5 cm in photothermal days, which is equal to the minimum duration under optimal temperature and photoperiod (photothermal days).
PHTHRS(8)	Also FL-SD the time from first flower to first seed in photothermal days, which is equal to the minimum duration under optimal temperature and photoperiod (photothermal days).
PHTHRS(10)	Also SD-PM the time from first seed to physiological maturity in photothermal days, which is equal to the minimum duration under optimal temperature and photoperiod (photothermal days).
PHTHRS(13)	Also FL-LF the time from first flower to end of leaf growth in pho- tothermal days, which is equal to the minimum duration under optimal temperature and photoperiod (photothermal days).

LFMAX	Maximum leaf photosynthesis rate at saturated light level, optimal temperature (micromol (CO_2 / m^2s))
SLAVAR	Specific leaf area (SLA) for new leaves during peak vegetative growth for cultivar I, modified by environmental factors (cm^2/g) .
SIZLF	Maximum size of fully expanded leaf on the plant under standard growing conditions (3 leaflets), cm ²
XFRUIT	Maximum fraction of daily available gross photosynthesis (PG) which is allowed to go to seeds plus shells for cultivar I, varies from 0 - 1.
WTPSD	Maximum weight per seed under non-limiting substrate (g).
SFDUR	Seed filling duration for a cohort of seed (photothermal days).
SDPDVR	Also SDPDV; average seed per pod under stnadard growing con- ditions.
PODUR	Photothermal days for cultivar to add full pod load under optimal conditions, used to compute rate of pod and flower addition.

TABLE 16. GENETIC COEFFICIENTS FILE FOR CROPGRO-SOYBEAN. (SBGRO940.CUL)

*SOYBEAN GENOTYPE COEFFICIENTS - CRGR0940 MODEL

@VAR# VRNAME	ECO#	CSDL	PPSEN	EM-FL	FL-SH	FL-SD	SD-PM	FL-LF	LFMAX	SLAVR	SIZLF	XFRT	WTPSD	SFDUR	SDPDV	PODUR
!		1	2	3	4	5	б	7	8	9	10	11	12	13	14	15
990001 M GROUP 1	SB0101	13.84	0.203	17.0	6.0	13.0	32.00	30.00	1.022	350.	180.0	1.00	0.18	22.0	2.05	10.0
990002 M GROUP 2	SB0201	13.59	0.249	17.4	6.0	13.5	33.00	30.00	1.022	350.	180.0	1.00	0.18	22.0	2.05	10.0
990003 M GROUP 3	SB0301	13.40	0.285	19.0	6.0	14.0	34.00	30.00	1.022	350.	180.0	1.00	0.18	22.0	2.05	10.0
990004 M GROUP 4	SB0401	13.09	0.294	19.4	7.0	15.0	34.50	30.00	1.022	350.	180.0	1.00	0.18	22.0	2.05	10.0
990005 M GROUP 5	SB0501	12.83	0.303	19.8	8.0	15.5	35.00	15.00	1.022	350.	180.0	1.00	0.18	22.0	2.05	10.0
990006 M GROUP 6	SB0601	12.58	0.311	20.2	9.0	16.0	35.50	15.00	1.022	350.	180.0	1.00	0.18	22.0	2.05	10.0
990007 M GROUP 7	SB0701	12.33	0.320	20.8	10.0	16.0	36.00	15.00	1.022	350.	180.0	1.00	0.18	22.0	2.05	10.0
990008 M GROUP 8	SB0801	12.07	0.330	21.5	10.0	16.0	36.00	15.00	1.022	350.	180.0	1.00	0.18	22.0	2.05	10.0
990009 M GROUP 9	SB0901	11.88	0.340	23.0	10.0	16.0	36.50	15.00	1.022	350.	180.0	1.00	0.18	22.0	2.05	10.0
990010 M GROUP 10	SB1001	11.78	0.349	23.5	10.0	16.0	37.00	15.00	1.022	350.	180.0	1.00	0.18	22.0	2.05	10.0
990011 M GROUP 000	SB0001	14.60	0.129	15.5	5.0	12.0	29.50	30.00	1.022	350.	180.0	1.00	0.18	22.0	2.05	10.0
990012 M GROUP 00	SB0001	14.35	0.148	16.0	5.0	12.0	30.00	30.00	1.022	350.	180.0	1.00	0.18	22.0	2.05	10.0
990013 M GROUP 0	SB0001	14.10	0.171	16.8	6.0	13.0	31.00	30.00	1.022	350.	180.0	1.00	0.18	22.0	2.05	10.0
UC0001 ALTONA (00)	SB0001	14.42	0.148	17.5	7.5	14.0	33.00	33.00	1.022	350.	180.0	1.00	0.18	16.0	2.05	12.0
UC0002 MAPLE ARROW (00)	SB0001	14.42	0.148	17.8	7.0	13.0	33.50	33.00	1.022	350.	180.0	1.00	0.18	16.0	2.05	10.5
UC0003 MCCALL (00)	SB0001	14.42	0.148	17.0	5.5	12.0	34.00	33.00	1.022	350.	180.0	1.00	0.18	16.0	2.05	9.0
IB0011 EVANS (0)	SB0001	14.00	0.171	16.8	6.5	12.4	33.00	31.00	1.022	360.	180.0	1.00	0.18	24.0	2.05	12.0
IB0037 ELGIN-87 (2)	SB0201	13.65	0.240	17.4	6.0	10.7	33.00	31.50	1.022	380.	150.0	1.00	0.18	20.0	2.05	10.0
IB0003 WAYNE (3)	SB0302	13.50	0.226	21.0	8.0	15.5	30.00	25.00	1.022	380.	135.0	1.00	0.16	20.0	2.20	21.0
IB0009 WILLIAMS (3)	SB0301	13.45	0.285	20.5	9.0	16.0	30.00	30.00	1.022	350.	120.0	1.00	0.18	24.0	2.50	15.0
IB0010 WILLIAMS-82 (3)	SB0301	13.45	0.285	19.5	8.0	15.0	31.50	30.00	1.022	350.	120.0	1.00	0.18	24.0	2.50	10.0
IB0043 CLARK (4)	SB0502	12.83	0.303	18.0	9.0	15.0	32.00	30.00	1.022	390.	200.0	1.00	0.18	20.0	2.10	12.0
IB0008 FORREST (5)	SB0501	12.83	0.303	22.6	7.0	14.5	33.00	15.00	1.022	350.	140.0	1.00	0.18	23.0	2.05	9.0
IB0001 BRAGG (7)	SB0701	12.33	0.320	19.5	10.0	15.0	35.50	15.00	1.022	350.	170.0	1.00	0.18	22.0	2.05	10.0
IB0006 RANSOM (7)	SB0701	12.37	0.320	18.0	10.0	16.0	32.00	15.00	1.022	350.	170.0	1.00	0.18	22.0	2.05	10.0
IB0002 COBB (8)	SB0801	12.25	0.330	21.0	9.0	16.0	37.00	15.00	1.022	380.	180.0	1.00	0.15	22.0	1.90	10.0
IB0033 PAPILLON (9)	SB0901	11.88	0.340	28.0	6.0	11.0	30.00	15.00	1.022	350.	180.0	1.00	0.18	22.0	2.05	20.0
IB0012 JUPITER (10)	SB0901	11.88	0.340	28.9	7.0	13.5	31.50	15.00	1.022	350.	180.0	1.00	0.18	22.0	2.05	20.0

Crop Models • Cr

CERES-RICE

Table 17 shows an example of the current cultivars defined for rice. Required genetic coefficients include :

VAR#	Identification code or number for a specific cultivar.
VAR-NAME	Name of cultivar.
ECO#	Ecotype code for this cultivar, points to the Ecotype in the ECO file (cur- rently not used).
P1	Time period (expressed as growing degree days [GDD] in ^O C above a base temperature of 9 ^O C) from seedling emergence during which the rice plant is not responsive to changes in photoperiod. This period is also referred to as the basic vegetative phase of the plant.
P2O	Critical photoperiod or the longest day length (in hours) at which the development occurs at a maximum rate. At values higher than P2O developmental rate is slowed, hence there is delay due to longer day lengths.
P2R	Extent to which phasic development leading to panicle initiation is delayed (expressed as GDD in ^O C) for each hour increase in photoperiod above P2O
P5	Time period in GDD (O C) from beginning of grain filling (3 to 4 days after flowering) to physiological maturity with a base temperature of 9^{O} C.
G1	Potential spikelet number coefficient as estimated from the number of spikelets per g of main culm dry weight (less lead blades and sheaths plus spikes) at anthesis). A typical value is 55.
G2	Single grain weight (g) under ideal growing conditions, i.e. nonlimiting light, water, nutrients, and absence of pests and diseases.
G3	Tillering coefficient (scaler value) relative to IR64 cultivar under ideal con- ditions. A higher tillering cultivar would have coefficient greater than 1.0.
G4	Temperature tolerance coefficient. Usually 1.0 for varieties grown in nor- mal environments. G4 for japonica type rice growing in a warmer envi- ronment would be 1.0 or greater. Likewise, the G4 value for indica type rice in very cool environments or season would be less than 1.0.

TABLE 17. GENETIC COEFFICIENTS FILE FOR CERES-RICE. (RICER940.CUL)

*RICE GENOTYPE COEFFICIENTS - RICER940 MODEL ! P5 P20 @VAR# VAR-NAME..... ECO# P1 P2R G1 G2 G3 G4 1 1 2 3 4 5 б 7 8 I. IB0001 880.0 52.0 550.0 12.1 65.0 .0280 1.00 1.00 TB0001 TR 8 IB0001 500.0 166.0 500.0 11.2 65.0 .0280 1.00 1.00 IB0002 IR 20 IB0001 450.0 149.0 350.0 11.7 68.0 .0230 1.00 1.00 IB0003 IR 36 IB0004 IR 43 IB0001 720.0 120.0 580.0 10.5 65.0 .0280 1.00 1.00 IB0005 LABELLE IB0001 318.0 189.0 550.0 12.8 65.0 .0280 1.00 1.00 IB0001 698.0 134.0 550.0 13.0 65.0 .0280 1.00 1.00 IB0006 MARS IB0007 NOVA 66 IB0001 389.0 155.0 550.0 11.0 65.0 .0280 1.00 1.00 IB0008 PETA IB0001 420.0 240.0 550.0 11.3 65.0 .0280 1.00 1.00 IB0009 STARBONNETT IB0001 880.0 164.0 550.0 13.0 65.0 .0280 1.00 1.00 IB0010 UPLRI5 IB0001 620.0 160.0 380.0 11.5 50.0 .0220 0.60 1.00 IB0011 UPLRI7 IB0001 760.0 150.0 450.0 11.7 65.0 .0280 1.00 1.00 IB0012 IR 58 IB0001 460.0 5.0 420.0 13.5 60.0 .0250 1.00 1.00 IB0013 SenTaNi (???) IB0001 320.0 50.0 550.0 10.0 70.0 .0300 1.00 1.00 IB0001 350.0 125.0 520.0 11.5 60.0 .0280 1.00 1.00 IB0014 IR 54 IB0015 IR 64 IB0001 500.0 160.0 450.0 12.0 60.0 .0250 1.00 1.00 IB0016 IR 60(Est) IB0001 490.0 100.0 320.0 11.5 75.0 .0275 1.00 1.00 IB0017 IR 66 IB0001 500.0 50.0 490.0 12.5 62.0 .0265 1.00 1.00 IB0018 IR 72x IB0001 400.0 100.0 580.0 12.0 76.0 .0230 1.00 1.00 IB0001 400.0 100.0 580.0 12.0 76.0 .0230 1.00 1.00 IB0001 603.3 150.0 452.5 11.2 65.0 .0230 1.00 1.00 IB0019 RD 7 (cal.) IB0020 RD 23 (cal.) IB0001 310.3 140.0 370.0 11.2 53.0 .0230 1.00 1.00 IB0021 CICA8 IB0001 700.0 120.0 360.0 11.7 60.0 .0270 1.00 1.00 IB0022 LOW TEMP.SEN IB0001 400.0 120.0 420.0 12.0 60.0 .0250 1.00 0.80 IB0023 LOW TEMP.TOL IB0001 400.0 120.0 420.0 12.0 60.0 .0250 1.00 1.25 IB0024 17 BR11,T.AMAN IB0001 740.0 180.0 400.0 10.5 55.0 .0250 1.00 0.90 IB0025 18 BR22, T.AMAN IB0001 650.0 110.0 400.0 12.0 60.0 .0250 1.00 1.00 IB0026 19 BR 3,T.AMAN IB0001 650.0 110.0 420.0 12.0 65.0 .0250 1.00 1.00 IB0027 20 BR 3,BORO IB0001 650.0 90.0 400.0 13.0 65.0 .0250 1.00 1.00 IB0001 380.0 150.0 300.0 12.8 38.0 .0210 1.00 1.00 IB0029 CPIC8 IB0030 LEMONT IB0001 500.0 50.0 300.0 12.8 60.0 .0207 1.00 1.00 IB0031 RN12 IB0001 380.0 50.0 300.0 12.8 40.0 .0199 1.00 1.15 IB0032 TW IB0001 360.0 50.0 290.0 12.8 55.0 .0210 1.00 1.00 IB0115 IR 64 IB0001 540.0 160.0 490.0 12.0 50.0 .0250 1.10 1.00 IB0116 HEAT SENSITIVE IB0001 460.0 5.0 390.0 13.5 62.0 .0250 1.00 1.15 IB0118 IR 72 IB0001 560.0 20.0 390.0 13.5 60.0 .0250 1.00 1.00

CROPSIM-Cassava

Table 18 shows an example of the current cultivars defined for cassava. Required genetic coefficients include :

- DUB1 Duration of branch 1 phase (Biological day^{*} from germination to first branch)
- DUBR Duration of branch 2 and greater phases (Biological day^{*} between branches)
- DESP Development, sensitivity to photoperiod (h⁻¹) (0=insensitive)
- PHCX Photosynthesis, canopy, maximum rate $(g dm/m^2 d^{-1})$
- S#PE Stem number per plant at emergence (#)
- S#FX Shoot number per fork, maximum (#)
- S#PX Shoot number per plant, maximum (#)
- SWNX Stem weight to node weight ration (fr)
- L#IS Leaf number, increase rate, standard (leaves (shoot-1) Biological day^{*}-1)
- L#IP Leaf number, increase period (Biological day^{*} after emergence)
- LALX Leaf area, maximum, (cm²/leaf)
- LAXA Leaf area, maximum, age at which reached (Biological day^{*} after emergence)
- LAL3 Leaf area, 300 days after emergence (cm²/leaf)
- LAWS Leaf area to weight ration, standard (cm^2/g)
- LFLI Leaf life (Day)

^{*} Biological days are equivalent to chronological days at the optimum temperature and daylength, and with no water or nutrient limitations.

Crop Models • Cr

TABLE 18. GENETIC COEFFICIENTS FILE FOR CROPSIM-CASSAVA. (CSSIM940.CUL)

*CASSAVA GENOTYPE COEFFICIENTS -CSSIM940 MODEL

!																	
@VAR#	VRNAME	TYPE	DUB1	DUBR	DESP	PHCX	S#PE	S#FX	S#PX	SWINX	L#IS	L#IP	LALX	LAXA	LAL3	LAWS	LFLI
!			1	2	3	4	5	б	7	8	9	10	11	12	13	14	15
990001	Default	1	44.1	35.3	0	27.5	1.0	3.00	30	.650	1.21	235	300	60	50	240	70
UC0001	MCol-1120	1	44.1	35.3	0	27.5	1.0	3.00	30	.650	1.21	235	300	60	50	240	70
UC0002	MCol-22	1	44.4	58.8	0	20.0	1.2	3.60	28	.650	0.85	330	300	60	50	180	130
UC0003	MCl-113	1	44.1	35.3	0	27.5	1.0	3.00	30	.650	1.21	235	300	60	50	240	70
UC0004	MMex-59	1	41.3	29.4	0	24.0	1.0	2.80	35	.750	1.21	212	450	60	50	250	65
UC0005	Popayan	1	44.1	35.3	0	27.5	1.0	3.00	30	.650	1.21	235	300	60	50	240	70
UC0006	MCol-1684	1	14.7	24.8	0	27.5	1.0	2.61	27	.590	0.94	370	220	55	40	270	45
UC0007	MVen-77	1	49.4	42.9	0	27.5	1.0	2.95	25	.760	1.13	353	450	70	35	270	75
UC0008	MPtr-26	1	64.7	50.0	0	27.5	1.0	3.00	20	.708	1.45	294	450	70	50	220	75
UC0009	MCol-638	1	44.4	28.2	0	23.5	1.0	2.95	52	.700	1.10	235	350	60	35	220	80
UC0010	Ceiba	1	32.4	35.3	0	26.5	1.0	3.00	30	.650	1.21	235	300	60	50	240	70
UC0011	JD2	1	44.1	35.3	0	27.5	1.0	3.00	30	.650	1.21	235	300	60	50	240	70
UC0012	MAus-1	1	44.1	35.3	0	27.5	1.0	3.00	30	.650	1.21	235	300	60	50	240	70
UC0013	MAus-10	1	14.7	41.2	0.25	25.0	3.0	3.09	50	0.76	1.21	235	240	45	70	350	161
UC0014	MAus-13	1	44.1	35.3	0	27.5	1.0	3.00	30	.650	1.21	235	300	60	50	240	70
UC0014	MAus-15	1	44.1	35.3	0	27.5	1.0	3.00	30	.650	1.21	235	300	60	50	240	70
UC0016	MAus-19	1	44.1	35.3	0	27.5	1.0	3.00	30	.650	1.21	235	300	60	50	240	70
UC0017	MAus-22	1	44.1	35.3	0	27.5	1.0	3.00	30	.650	1.21	235	300	60	50	240	70
UC0018	MAus-7	1	44.1	35.3	0	27.5	1.0	3.00	30	.650	1.21	235	300	60	50	240	70
UC0019	MAus-8	1	44.1	35.3	0	27.5	1.0	3.00	30	.650	1.21	235	300	60	50	240	70
UC0020	MCol-1438	1	44.1	35.3	0	27.5	1.0	3.00	30	.650	1.21	235	300	60	50	240	70
UC0021	MCol-1468	1	44.1	35.3	0	27.5	1.0	3.00	30	.650	1.21	235	300	60	50	240	70
UC0022	MCol-1501	1	44.1	35.3	0	27.5	1.0	3.00	30	.650	1.21	235	300	60	50	240	70
UC0023	MCol-1505	1	44.1	35.3	0	27.5	1.0	3.00	30	.650	1.21	235	300	60	50	240	70
UC0024	MCol-1513	1	44.1	35.3	0	27.5	1.0	3.00	30	.650	1.21	235	300	60	50	240	70
UC0025	MCol-72	1	44.1	35.3	0	27.5	1.0	3.00	30	.650	1.21	235	300	60	50	240	70
UC0026	MMex-11	1	44.1	35.3	0	27.5	1.0	3.00	30	.650	1.21	235	300	60	50	240	70
UC0027	TMS-30572	1	44.1	35.3	0	27.5	1.0	3.00	30	.650	1.21	235	300	60	50	240	70
UC0028	Nina	1	44.1	35.3	0	27.5	1.0	3.00	30	.650	1.21	235	300	60	50	240	70
UC0029	Pata	1	44.1	35.3	0	27.5	1.0	3.00	30	.650	1.21	235	300	60	50	240	70
UC0030	SM1-150	1	44.1	35.3	0	27.5	1.0	3.00	30	.650	1.21	235	300	60	50	240	70
UC0031	Betawi	1	44.1	35.3	0	27.5	1.0	3.00	30	.650	1.21	235	300	60	50	240	70
UC0032	CM-507-37	1	44.1	35.3	0	27.5	1.0	3.00	30	.650	1.21	235	300	60	50	240	70
1 Note	ag :																

[!] Notes:

! Palta (1984): MMex59, MVen218, MColl684 are vigorous cultivars;

! MCol72,MCol22,MCol638 are less vigorous.

! CM507-37: hybrid; see El-Sharkaway & Cock (1987).

! TMS 30572 in Gutierrez et al (1987).

APPENDIX B. IMPLEMENTING PEST DAMAGE

In DSSAT v3, the pest damage routines have been implemented only in the CROPGRO models (Batchelor et al., 1993). In order to use the damage routines, the type of damage, as well as the amount of damage, must be input by the user. The damage routines were structured to provide flexibility in collecting damage data. Two different methods can be used to describe damage. In typical farm operations, pest population data can be collected through field scouting, and damage can be computed if pest feeding rates are known. In other instances, the actual amount of damage can be measured. This latter approach is useful when pest populations are difficult to measure, or when the source of damage is unknown. Predefined pest definitions can be used to convert scouting report data on pest populations, or observed damage, into daily damage, which is subsequently applied to the crop model. Predefined damage definitions can be used to convert observed levels of damage into daily damage that is subsequently applied to the crop model. New pest or damage definitions can be developed for a wide range of damage types. Currently, damage can be applied to 21 different plant components in CROPGRO.

Pest Damage Methodology

Twenty one state and/or rate variables, called coupling point (see Table 19), were identified as targets for pest damage. Damage is applied to each coupling point by the coupling point damage variable (or PCPID, described in the following section). There is a unique coupling point damage variable for each coupling point. The user supplies information that is used by the crop model to compute daily damage, which is then applied to the desired coupling point through the coupling point damage variable.

Four different types (or variable PCTID, described in the following section) can be defined to describe observed damage data:

- 1. Daily Absolute Damage rate,
- 2. Percent Observed Damage,
- 3. Daily Percent Damage rate, and

4. Daily Absolute Damage rate with pest competition and food preference effects.

Table 19 shows the allowable damage types available for each coupling point. The coupling point damage variable (PCPID) contains the amount of damage

TABLE 19. COUPLING POINTS AND DAMAGE TYPES USED TO APPLY DAMAGE IN THE CROPGRO CROP MODELS.

Coupling point	Units ¹	Available damage types ²	Coupling point damage variable
<pre>leaf area index leaf mass stem mass root mass root length root length volume small seed number large seed number mature seed number small seed mass large seed mass mature seed mass small shell number large shell number mature shell number small shell mass large shell mass mature shell mass whole plant assimilate necrotic leaf area index</pre>	$m^2 m^{-2}$ $g m^{-2}$ $g m^{-2}$ $g m^{-2}$ $cm cm^{-2}$ $cm cm^{-3}$ $no. m^{-2}$ $no. m^{-2}$ $no. m^{-2}$ $g m^{-2}$ $g m^{-2}$ m^{-2}	1,2,3,4 1,2,3,4 1,2,3,4 1,3	LAD LMD SMD RMD RLF RLV SDNS SDNL SDNM SDMS SDML SDMM SHNS SHNL SHNM SHNS SHNL SHMM SHMS SHML SHMM WPD ASM
 Per unit ground area Where damage type are: (1) Damage, (3) Daily Percent pest competition and food 	Damage rate, an	nd (4) Daily Absolute Da	

(PDCF1) and the damage type descriptor (PCTID) tells CROPGRO how to apply the damage to the coupling point.

The type of damage selected depends upon the type of damage data that can be collected. Number 1, "Absolute Daily Damage," is useful when pest population data can be collected. If pest populations and feeding rates are known, daily damage to coupling points can be computed in units of mass per unit area. Number 2, "Percent Observed Damage," typically occurs when observations of plant components are compared between some scientific treatment and control. For example, defoliation can occur in one treatment, resulting in a percent difference in leaf mass between a treatment and control. In this case, the source of

damage may not be known; while time series measurements describing the percent reduction between treatment and control is known. Number 3, "Daily Percent Damage," rate is useful when damage can be measured as percent on a daily basis. For instance, in a manual defoliation study, 33 percent and 66 percent defoliation may be applied on a particular day during the season. In this case, damage is applied as a percent daily damage. Another example would be the application of a shade cloth that blocks 80 percent of incoming light, resulting in an 80 percent reduction in daily assimilate production during the period of shading. Number 4, "Daily Absolute Damage" rate is intended to be used for insects that compete for feeding sites. If insect demand for the primary food source is high relative to supply, some damage is partitioned to secondary food sources.

Pest Damage Data Files

Two data files are used to define the pest linkage. A field-specific record of observed pest or pest damage levels is contained in the time series file (FILET) associated with each experiment. A typical FILET with recorded pest populations is shown in Table 20. Each column has a 4 character header that is unique for each pest (the PID variable, described below). The first two columns in this file contain the treatment number and observation date. The measured level of pest and/or damage is input in a column containing a 4 character header abbreviation for the pest or damage. This approach for recording observed pest and damage levels follows a typical field scouting record format. The steps required to define a pest progress file are as follows.

- 1. Put a header in the header column of FILET that matches the pest identifier (PID; see Tables 21-23 for dry bean, peanut and soybean, respectively) for the pest defined in the pest coefficient file.
- 2. Input the year and day of year in the first two columns of FILET for pest observation dates.
- 3. Input population level or damage level in FILET in the pest column corresponding to the observation date.

Observed pest and damage reported in the pest progress file (FILET) must have a corresponding definition in the pest coefficient file (*.PST). This crop-specific pest coefficient file defines individual pests or damage in terms of coupling points and feeding rates. Feeding rate coefficients, which have designated units, provide a means of converting from pest population to damage to coupling points. The pest coefficient files, distributed with the CROPGRO model for dry bean, peanut, and soybean are shown in Tables 21-23.

The following columns are included in these pest coefficient files.							
1st column:	pest number (LN);						
2nd column:	pest identifier (PID);						
3rd column:	pest name (PNAME);						
4th column:	damage characterization type (PCTID);						
5th column:	coupling point identifier (PCPID), defined in Table 19;						
6th column:	feeding rate coefficient (PDCF1);						
7th column:	additional coefficient (PDCF2, currently not implemented.						
8th column:	units of the feeding rate coefficient (Units); and						
9th column:	source for damage rates (Source).						

To add a new pest or damage type to the pest coefficient file, the user must contact the model developer (see Appendix D of this Part).

TABLE 20. TYPICAL TIME SERIES FILE (FILET) CONTAINING EXAMPLES OF PESTPROGRESS DATA FOR SIX PEST AND DAMAGE TYPES¹ FOR SOYBEAN.

*EXP.DA	ATA (T)	: UFBI9	101SB	Drew	field	drought	study
@TRNO	DATE	CEW6	SL6	VC5	VC6	SHAD	GC5
1	91147	0.0	1.5	0.25	0.4	30.0	0.0
1	91154	0.5	2.8	0.25	0.6	30.0	0.6
1	91161	0.9	3.3	0.1	1.2	0.0	0.1
1	91168	1.5	6.4	0.0	1.6	-99	0.0
1	91175	0.2	0.5	0.0	1.8	-99	0.0
1	91181	0.0	1.2	0.0	1.0	-99	0.0
1	91188	-99	1.5	-99	0.2	-99	0.0
1	91195	-99	3.3	-99	0.0	-99	0.0

1 The pest names defined by these pest header are: CEW6 - 6th instar corn earworm; SL6 - 6th instar soybean looper; VC5- 5th instar velvetbean caterpillar; VC6 - 6th instar velvetbean caterpillar; SHAD - percent canopy shading by shade cloth; and GC5 - 5th instar green cloverworm. Each pest and damage is defined in the pest coefficient file.

TABLE 21. A TYPICAL PEST COEFFICIENT FILE FOR DRY BEAN. (BNGRO940.PST)

LN PID	PNAME PCT:	ID	PCPID	PDCF1	PFCF2	Units	Source
01 EMP	Empoasca kramerii	4	SDNS	10.0000000	0.0000	no./larva/d	estimated
			SDNL	2.50000000	0.0000	no./larva/d	estimated
			LAD	0.00505000	0.0000	m2/larva/d	estimated
02 APN2	4 Instar Apion	1	SDNS	10.0000000	0.0000	no./larva/d	estimated
		1	SDNL	2.50000000	0.0000	no./larva/d	estimated
03 APN4	4 Instar Apion	1	SDNS	10.0000000	0.0000	no./larva/d	estimated
		1	SDNL	2.50000000	0.0000	no./larva/d	estimated
04 HL2	Heliothis	1	SDNS	10.0000000	0.0000	no./larva/d	estimated
05 HL4	Heliothis	1	SDNS	10.0000000	0.0000	no./larva/d	estimated
06 HL6	Heliothis	1	SDNS	10.0000000	0.0000	no./larva/d	estimated
07 EPN	Epinotia	4	SDNS	15.0000000	0.0000	no./m2/d	estimated
			SDNM	5.0000000	0.0000	no./m2/d	estimated
08 WFL	Bemisia (white fly)	1	LMD	2.0000000	0.0000	g/larva/day	estimated
09 BSM	Bean stem maggot	1	RLV	1.00000000	0.0000	cm/cm2/lar/d	estimated
10 PCLA	Obs.% defoliation	2	LAD	1.00000000	0.0000	alo	estimated
11 PSTM	Obs.% Stem damage	2	SMD	1.00000000	0.0000	olo	estimated
12 PDLA	% Diseased Leaf Area	3	PDLA	1.00000000	0.0000	%/day	estimated
13 PRP	% Reduction in Photo	3	ASM	1.00000000	0.0000	%/day	estimated
14 PLAI	% daily LAI dest.	3	LAD	1.00000000	0.0000	%/day	estimated
15 PLM	% daily Leaf Mass	3	LMD	1.00000000	0.0000	%/day	estimated
16 PWP	% Whole Plants	3	WPD	1.00000000	0.0000	%/day	estimated
17 PSDN	% All Seed Dest.	3	SDNL	1.00000000	0.0000	%/day	estimated
			SDNS	1.00000000	0.0000	%/day	estimated
			SDNM	1.00000000	0.0000	%/day	estimated
18 PSHN	% All Shell Dest.	3	SHNL	1.00000000	0.0000	%/day	estimated
			SHINS	1.00000000	0.0000	%/day	estimated
			SHNM	1.00000000	0.0000	%/day	estimated
19 PPDN	% All Pod Dest.	3	PPDN	1.00000000	0.0000	%/day	estimated
20 PRTM	% Root mass dest.	3	RMD	1.0000000	0.0000	%/day	estimated

TABLE 22. A TYPICAL PEST COEFFICIENT FILE FOR PEANUT. (PNGRO940.PST)

LI	N PID ¹	PNAME PCT:	ID PC	PID	PDCF1	PFCF2	Units	Source
0	L CEW6	Corn Earworm ²	1 LA	AD	0.00505000	0.0000	m2/larva/d	Szmedra et al. 1988
02	2 VBC5	5 Instar Velvetbean 3	1 LA	AD	0.00081000	0.0000	m2/larva/d	Reid, 1975
0	3 VBC6	6 Instar Velvetbean	1 LA	4D	0.00144000	0.0000	m2/larva/d	Reid, 1975
04	4 SL4	Soybean Looper ⁴	1 LA	AD	0.00044000	0.0000	m2/larva/d	Reid and Green 1975
05	5 SL5	Soybean Looper	1 LA	4D	0.00071000	0.0000	m2/larva/d	Reid and Green 1975
00	5 SL6	Soybean Looper	1 LA	4D	0.00124000	0.0000	m2/larva/d	Reid and Green 1975
0'	7 FAW	Fall Armyworm	1 LM	Ð	2.0000000	0.0000	g/larva/d	estimated
08	3 RTWM	rootworm	1 RL	JV	1.00000000	0.0000	cm/cm2/lar/d	estimated
09	9 PCLA	Obs.% defoliation	2 LA	AD.	1.00000000	0.0000	olo	estimated
1() PSTM	Obs.% Stem damage	2 SM	1D	1.00000000	0.0000	00	estimated
1	l pdla	<pre>% Diseased Leaf Area</pre>	3 PD	DLA	1.00000000	0.0000	%/day	estimated
12	2 PRP	% Reduction in Photo	3 AS	SM	1.00000000	0.0000	%/day	estimated
13	3 PLAI	% daily LAI dest.	3 LA	4D	1.00000000	0.0000	%/day	estimated
14	1 PLM	% daily Leaf Mass	3 LM	Ð	1.00000000	0.0000	%/day	estimated
1	5 PWP	% Whole Plants	3 WP	PD	1.00000000	0.0000	%/day	estimated
10	5 PSDN	% All Seed Dest.	3 SD	DNL	1.00000000	0.0000	%/day	estimated
			SD	DNS	1.00000000	0.0000	%/day	estimated
			SD	DNM	1.00000000	0.0000	%/day	estimated
1'	7 PSHN	% All Shell Dest.	3 SH	INL	1.00000000	0.0000	%/day	estimated
			SH	INS	1.00000000	0.0000	%/day	estimated
			SH	INM	1.00000000	0.0000	%/day	estimated
18	3 PPDN	% All Pod Dest.	3 PP	PDN	1.0000000	0.0000	%/day	estimated
19	9 PRTM	% Root mass dest.	3 RM	Ð	1.00000000	0.0000	%/day	estimated

 $^{1}\ \mbox{Pest}$ identifier or abbreviation for the pest or damage type.

² Corn Earworm (Heliothis Zea.)

³ Velvetbean Caterpillar (Anticarsia gemmatalis)

⁴ Soybean Looper (Pseudoplusia includens)

TABLE 23. A TYPICAL PEST COEFFICIENT FILE FOR SOYBEAN. (SBGRO940.PST)

LN	PID ¹	PNAME P	CTID	PCPID	PDCF1	PFCF2	Units	Source
01	CEW6	Corn Earworm ²	4	SDNS SDNL	10.0000000	0.0000	no./larva/d no./larva/d	Batchelor et al.1989 Szmedra et al. 1988
				LAD	0.00505000	0.0000	m2/larva/d	Szmedra et al. 1988
0.2	VBC5	5 Instar Velvetbea	n ³ 1		0.00081000	0.0000	m2/larva/d	Reid, 1975
	VBC5 VBC6	6 Instar Velvetbea		LAD	0.00144000	0.0000	m2/larva/d	Reid, 1975
	SL4	Soybean Looper ⁴		LAD	0.00044000	0.0000	m2/larva/d	Reid and Green 1975
05		Soybean Looper		LAD	0.00071000	0.0000	m2/larva/d	Reid and Green 1975
06		Soybean Looper		LAD	0.00124000	0.0000	m2/larva/d	Reid and Green 1975
	SGSB	Stinkbug ⁵		SDNS	15.0000000	0.0000	no./m2/d	Batchelor et al. 1989
				SDNM	5.00000000	0.0000	no./m2/d	Batchelor et al. 1989
08	FAW	Fall Armyworm	1	LMD	2.00000000	0.0000	g/larva/day	estimated
09	RTWM	rootworm	1	RLV	1.00000000	0.0000	cm/cm2/lar/d	estimated
10	PCLA	Obs.% defoliation	2	LAD	1.00000000	0.0000	010	estimated
11	PSTM	Obs.% Stem damage	2	SMD	1.00000000	0.0000	00	estimated
12	PDLA	% Diseased Leaf Ar	ea 3	PDLA	1.00000000	0.0000	%/day	estimated
13	PRP	% Reduction in Pho	to 3	ASM	1.00000000	0.0000	%/day	estimated
14	PLAI	% daily LAI dest.	3	LAD	1.00000000	0.0000	%/day	estimated
15	PLM	% daily Leaf Mass	3	LMD	1.00000000	0.0000	%/day	estimated
16	PWP	% Whole Plants	3	WPD	1.00000000	0.0000	%/day	estimated
17	PSDN	% All Seed Dest.	3	SDNL	1.00000000	0.0000	%/day	estimated
				SDNS	1.00000000	0.0000	%/day	estimated
				SDNM	1.00000000	0.0000	%/day	estimated
18	PSHN	% All Shell Dest.	3	SHNL	1.00000000	0.0000	%/day	estimated
				SHNS	1.00000000	0.0000	%/day	estimated
				SHNM	1.00000000	0.0000	%/day	estimated
19	PPDN	% All Pod Dest.	3	PPDN	1.00000000	0.0000	%/day	estimated
20	PRTM	% Root mass dest.	3	RMD	1.00000000	0.0000	%/day	estimated

 $^{1}\ \mbox{Pest}$ identifier or abbreviation for the pest or damage type.

² Corn Earworm (Heliothis Zea.)

³ Velvetbean Caterpillar (Anticarsia gemmatalis)

⁴ Soybean Looper (Pseudoplusia includens)

⁵ Southern Green Stinkbug (Nezara virdula L.)

Examples of Pest Data Files for Various Experiments

EXAMPLE 1 (CORN EARWORM DAMAGE IN SOYBEAN)

In this example, damage resulting from 6th instar corn earworm (PID = CEW6) was applied to both irrigated and non-irrigated treatments in the soybean experiment UFGA7802.SBX. In the experiment, treatments 1 and 2 contained irrigated and non-irrigated Bragg soybean without pest damage. In treatments 3 and 4, pest damage due to observed levels of corn earworm was applied to the irrigated and non-irrigated treatments. It was assumed that the CEW6 population was measured through periodic field scouting, which resulted in the scouting report shown in Table 24.

In order to apply the pest damage in the model, the following steps were followed:

- 1. Checked to ensure that the pest was defined in the pest coefficient file (SBGRO940.PST) (see Table 23);
- 2. Entered the observed population levels in FILET (UFGA7802.SBT); and
- 3. Set the PEST damage option to 'Y' in FILEX (UFGA7802.SBX).

The steps described in the preceding section, "Pest Damage Data Files" were followed to add the pest population observations to FILET. As part of Step 2, a column was added in FILET, UFGA7802.SBT, using a text editor, containing the CEW6 header for corn earworm (or the PID) (see Table 25). The CEW6 header in

TABLE 24. CORN EARWORM POPULATION DATA COLLECTED FROM FIELD SCOUTING FOR THE SOYBEAN EXPERIMENT UFGA7802.

Day of year	Corn earworm population, no. m ⁻²	2
222	0.0	
229	0.5	
236	1.0	
243	2.5	
250	5.5	
257	11.1	
264	14.1	
271	13.1	
278	0.5	
285	0.8	
292	0.9	

DSSAT v3, Volume 2 • DSSAT v3,

TABLE 25. TIME SERIES FILE FOR THE SOYBEAN EXPERIMENT UFGA7802SHOWING 6TH INSTAR CORN EARWORM POPULATION LEVELS (CEW6).

*EXP.DATA (T): UFGA7802SB BRAGG, IRR*INSECT DAMAGE

@TRNO	DATE	LAID	SWAD	GWAD	LWAD	CWAD	PWAD	SHAD	SH%D	SLAD	HIAD	CEW6
	78194	.89	178	GWAD 0.	100AD	444	PWAD 0.	0.		334.6	0.0	0.0
	78201	1.28	300	0.	366	667	0.	0.		349.7	0.0	0.0
	78201	1.91	551	0.	656	1207	0.	0.		291.2	0.0	0.0
	78215	2.86	943	0.	843	1786	0.	0.		339.3	0.0	0.0
	78215	4.17	1561	0.	1187	2748	0.	0.		351.3	0.0	0.0
	78222	3.90	1956		1204	3160	0.			323.9	0.0	0.0
	78236	4.66	2947	0. 0.	1204 1723	4792	123	0. 123		270.5	0.0	0.0
	78243	4.00	2947 3144		1723	4792 5224	308	308		252.3	0.0	
	78250	4.47	3303	0. 182	1631	5224 5740	805		22.60			0.0
	78250						1613		46.75			
	78264	3.99	3326	754	1568	6507						0.0
		4.67	3657	1912	1769	8586	3161		60.49			0.0
	78271	2.83	2732	2223	1180	7144	3232		68.78			0.0
	78278	2.09	2515		858.0	7136	3763		72.55			0.0
	78285	.47	1851		170.0	5866	3845		75.76			0.0
T	78292	.09	2064	3169	34.0	6270	4172	T003	75.96	264./	0.505	0.0
2	78194	.75	160	0.	244	405	0.	0.	0.00	307.4	0.0	0.0
2	78201	1.08	251	0.	311	563	0.	0.	0.00	347.3	0.0	0.0
2	78208	1.81	535	0.	626	1161	0.	0.	0.00	289.1	0.0	0.0
2	78215	3.29	1080	0.	974	2054	0.	0.	0.00	337.8	0.0	0.0
2	78222	4.38	1663	0.	1261	2923	0.	0.	0.00	347.3	0.0	0.0
2	78229	4.30	2083	0.	1392	3475	0.	0.	0.00	308.9	0.0	0.0
2	78236	4.21	2556	0.	1517	4184	112	112	0.00	277.5	0.0	0.0
2	78243	4.50	2673	0.	1439	4431	319	319	0.00	312.7	0.0	0.0
2	78250	2.09	1998	42	838	3104	268	226	15.67	249.4	0.014	0.0
2	78257	3.24	2650	253	1220	4530	661	408	38.28	265.6	0.056	0.0
2	78264	2.30	2609	471	931	4440	901	430	52.28	247.0	0.106	0.0
2	78271	1.14	2113	775	498	3812	1200	425	64.58	228.9	0.203	0.0
2	78278	.85	1905	782	371	3398	1122	340	69.70	229.1	0.230	0.0
2	78285	.53	1922	1149	236	3732	1574	425	73.00	224.5	0.308	0.0
2	78292	.07	1590	1206	30	3250	1630	424	73.99	233.3	0.371	0.0
3	78194	.89	178	0.	266	444	0.	0.	0 00	334.6	0.0	0.0
	78201	1.28	300	0.	366	667	0.	0.		349.7	0.0	0.0
	78208	1.91	551	0.	656	1207	0.	0.		291.2	0.0	0.0
	78215	2.86	943	0.	843	1786	0.	0.		339.3	0.0	0.0
	78222	4.17	1561	0.	1187	2748	0.	0.		351.3	0.0	0.0
	78222	3.90	1956	0.	1204	3160	0.	0.		323.9	0.0	0.5
	78236	4.66	2947	0.	1723	4792	123	123		270.5	0.0	1.0
	78243	4.47	3144	0.	1772	5224	308	308		252.3	0.0	2.5
	78250	4.44	3303	182	1631	5740	805		22.60			5.5
	78250 78257	4.44 3.99	3326	102 754	1568	5740 6507	1613		46.75			11.1
	78264	3.99 4.67	3657	1912	1769	8586	3161		40.75			14.1
	78204 78271	2.83	2732	2223	1180	8588 7144	3232		68.78			13.1
3	78271	2.83	2732	2730	858	7144	3232 3763		72.55			0.5
	78278	2.09 .47		2730			3763		72.55			
			1851		170	5866						0.8
3	78292	.09	2064	3169	34	6270	4172	T003	75.96	204./	0.505	0.9

FILET must match the unique 4 character pest identifier (PID) for corn earworm in the pest coefficient file, SBGRO940.PST (see Table 23). This file is in used by the model to match the pest population with the pest coefficients. The header must be left-justified in the columns in FILET as described in Volume 2-1 (Jones et al. 1994) of this book for FILET formats. Next, the observed population levels were placed in UFGA7802.SBT (Table 25). (Note that the populations were entered in treatments 3 and 4. During the simulation, daily populations are linearly interpolated between observations entered in this file.) Finally, the DISES option was set to 'Y' and the pest output was turned on ((DIOUT = 'Y') in the Simulation Controls section of UFGA7802.SBX, as shown in Table 26.

TABLE 26. SIMULATION CONTROL SECTION OF FILE UFGA7802.SBX SHOWING THE DISEASE SIMULATION OPTION (DISES) SET TO 'Y' TO ENABLE PEST DAMAGE SIMULATION.

*S]	IMULATION CO	NTROLS										
@N	GENERAL	NYERS	NREPS	START	YRDAY	RSEED	SNAME.				• •	
1	GE	1	1	S	78166	2150	BRAGG,	IRRIC	GATED 8	k NON-1	IR	
@N	OPTIONS	WATER	NITRO	SYMBI	PHOSP	POTAS	DISES					
1	OP	Y	Y	Y	N	N	Y					
@N	METHODS	WTHER	INCON	LIGHT	EVAPO	INFIL	PHOTO					
1	ME	М	М	E	R	S	С					
@N	MANAGEMENT	PLANT	IRRIG	FERTI	RESID	HARVS						
1	MA	R	R	R	R	М						
	OUTPUTS		OVVEW	SUMRY			CAOUT		NIOUT		DIOUT	LONG
1	OU	N	Y	Y	3	Y	Y	Y	Y	N	Y	Y

EXAMPLE 2 (VELVETBEAN CATERPILLAR DEFOLIATION DAMAGE IN SOYBEAN)

The experiment UFQU7902 contained two soybean treatments. An insecticide was used in the control treatment and a second treatment was not sprayed. Periodic measurements of leaf area index showed severe defoliation due to velvetbean caterpillar larva occurred in the untreated treatment. In this experiment, pest population data were not collected; however, percent defoliation measured for the damaged treatment is shown in Table 27. In this experiment, defoliation can be simulated by specifying the percent observed defoliation over time.

To simulate damage, the following steps were taken:

- Checked to ensure that the pest was defined in the pest coefficient file (SBGRO940.PST) (see Table 23);
- 2. Entered the observed defoliation in FILET (UFQU7902.SBT); and
- 3. Set the PEST damage option to 'Y' in FILEX (UFQU7902.SBX).

The steps described in the section, "Pest Damage Data Files," were followed to add the pest observations to FILET. The PID for percent cumulative leaf area damage is PCLA. The PCPID was leaf area index, indicated by the CROPGRO leaf area index damage variable, LAD (Table 19). The PCTID selected was "2," which indicates that damage will be entered in FILET as observed defoliation. The crop model will compute the daily damage required to obtain this level of defoliation on the observation dates. The damage coefficient is 1.0, so that the

TABLE 27. PERCENT DEFOLIATION MEASURED AT DIFFERENT OBSERVATION DATES FOR THE SOYBEAN EXPERIMENT UFQU7902. DEFOLIATION OCCURRED DUE TO VELVETBEAN CATERPILLAR POPULATION; HOWEVER, THE POPULATION LEVEL WAS UNKNOWN.

Day of year	Observed defoliation,
241	0.0
248	22.6
255	56.1
262	50.0
271	52.5
276	57.1
283	57.9
288	61.7
292	53.3
295	71.4
303	100.0

damage recorded in FILET will be directly applied to one or more variables in the model. This means that these variables in the model are proportionally reduced by the same percent as entered for these coefficients in FILET. When a damage type, such as this one, is defined, direct measures of damage are typically recorded in the time series file and the damage coefficient is set to 1.0.

A column with the header PCLA was entered in the time series file UFQU7902.SBT. Percent damage on each observation date was entered for treatment 2 as shown in Table 28. The crop model linearly interpolates between observations to obtain daily levels of observed damage. An entry of "-99" indicates that data were not available. Thus, CROPGRO skips that entry for linear interpolation of daily damage. Finally, the DISES variable in the Simulation Controls section of UFQU7902.SBX was set to 'Y' as shown in Table 26.

TABLE 28. TIME SERIES DATA FILE FOR THE SOYBEAN EXPERIMENTUFQU7902 Showing Observed Defoliation Levels (PCLA) ResultingFROM VELVETBEAN CATERPILLAR DAMAGE.

*EXP.DATA (T)	: UFQU7902SB	BRAGG, WE	LL IRRIGATED	(defoliation)	
@TRNO DATE 1 79234 1 79241 1 79248 1 79255 1 79255 1 79262 1 79271 1 79276 1 79283 1 79288 1 79292 1 79292 1 79292	LAID SWAD 4.15 1945 5.48 2650 5.53 3075 5.54 3509 5.32 3435 4.04 3362 4.25 3103 3.92 3754 3.85 3601 1.36 2633 0.54 2084	GWAD LWA 0 121 0 165 60 192 303 171 777 186 1319 148 1943 154 2635 165 3313 160 3039 59 3896 14	4 3228 0 9 4455 132 5 5491 566 8 6755 1357 6 7395 1988 1 7351 2509 0 7635 3013 9 9372 4039 0 9957 4883 2 7578 4267 8 7666 5406	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PCLA -99 -99 -99 -99 -99 -99 -99 -99 -99 -9
1 79303 2 79234 2 79241 2 79248 2 79255 2 79262 2 79271 2 79276 2 79283 2 79283 2 79288 2 79292 2 79295 2 79303 2 79304 2 79305	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccccc} 3541 & 14 \\ & 0 & 154 \\ & 0 & 160 \\ 300 & 109 \\ 700 & 118 \\ 1000 & 85 \\ 1600 & 94 \\ 2100 & 74 \\ 2300 & 59 \\ 2400 & 26 \\ 3000 & 8 \\ -99 & 0 \\ -99 & 0 \\ -99 & 0 \\ -99 & 0 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-99 0.0 22.6 56.1 50.0 52.5 57.1 57.9 65.7 75.3 85.4 100.0 100.0

DSSAT v3, Volume 2 • DSSAT v3,

EXAMPLE 3 (LEAFSPOT DISEASE IN PEANUT)

In this third example, an experiment was conducted to determine the effect of late leafspot on peanut pod yield. In the control treatment, a fungicide was sprayed following extension guidelines to obtain good control of leafspot disease throughout the growing season. In the second treatment, no leafspot control measures were taken. Observed defoliation between the control and disease treatments were taken periodically throughout the growing season. Percent diseased leaf area was also measured on each treatment. Defoliation and percent diseased leaf area for the disease treatment were recorded as shown in Table 29.

As in the previous examples, the following steps were taken to link this damage to the crop model:

- Checked to ensure that the pest was defined in the pest coefficient file (PNGRO940.PST) (see Table 22);
- 2. Entered observed defoliation and percent diseased leaf area in FILET (UFGA8602.PNT); and
- 3. Set PEST damage option to 'Y' in FILEX (UFGA8602.PNX).

TABLE 29. OBSERVED PERCENT DEFOLIATION AND PERCENT DISEASED LEAF AREACOLLECTED FROM FIELD SCOUTING FOR THE PEANUT EXPERIMENT UFGA8602.

Days after	Percent observed	Percent diseased					
planting(DAP)	defoliation (PCLA)	leaf area (PDLA)					
218	0.0	0.0					
230	0.0	0.25					
232	4.8	0.28					
238	17.3	1.49					
246	25.5	41.3					
254	26.0	58.8					
260	28.0	56.5					
266	29.5	75.7					
274	31.2	90.1					
280	32.0	88.5					
288	30.5	99.1					
294	29.0	98.6					
302	-99	100.0					

The steps described in the section, "Pest Damage Data Files," were followed to add the pest observations to FILET. The PID for this damage is PDLA (see Table 22). The associated coupling point damage variable (PCPID) is also PDLA, which reduces healthy leaf area in the crop model (Table 19), and subsequently photosynthetic capacity. The damage characterization type (PCTID) is "3" since diseased leaf area is described as a percent per day.

After the two damage types were confirmed defined in the pest coefficient file (PNGRO940.PST; Table 22), the observed levels of damage were input in the time series file, UFGA8602.PNT, in columns corresponding to the four character pest identification codes PCLA and PDLA (Table 30). Daily values of damage will be generated by the model through linearly interpolating between observations. Finally, the DISES variable in the Simulation Controls section of UFGA8602.PNX was set to 'Y' to simulate pest damage in the same manner as shown in Table 26.

TABLE 30. TIME SERIES FILE FOR THE PEANUT EXPERIMENT UFGA8602 SHOWING OBSERVED LEVELS OF DEFOLIATION (PCLA) AND DISEASED LEAF AREA (PDLA) DUE TO LEAFSPOT DISEASE.

*EXP.DATA (T): UFGA8602PN RAINFED, FLORUNNER,GOOD DISEASE CONTROL

@TRNO	DATE	L#SD	PCLA	PDLA	LAID	P#AD	SWAD	GWAD	LWAD	CWAD	PWAD	ATPW	DTPW	SHAD	G#AD	HIPD	SH%D	SLAD	GWGD
1	86176	7.4	0.0	0.0	0.29	0.	85.	0.		222.	0.	0.	0.	0.	0.0	0.000	0.0	215.	0.0
1	86190	10.6	0.0	0.0	1.14	0.	397.	0.	492.	889.	0.	0.	0.	0.	0.0	0.000	0.0	231.	0.0
1	86204	14.8	0.0	0.0	2.48		1332.	0.	1164.	2509.	13.	13.	0.	13.	0.0	0.005	0.0	213.	0.0
1	86211	15.6	0.0	0.0	3.16	32.	1714.	0.	1526.	3306.	67.	67.	0.	67.	0.0	0.020	0.0	209.	0.0
1	86218	17.1	0.0	0.0	5.52	226.	3049.	56.	2248.	5545.	248.	248.	0.	192.	67.5	0.045	20.7	246.	83.0
1	86230	21.0	0.0	0.0	5.64	273.	3411.	264.	2440.	6528.	678.	678.	0.	414.	197.1	0.104	36.1	231.	133.9
1	86232	21.8	0.0	0.0	6.50	461.	4052.	486.	2640.	7683.	990.	990.	0.	504.	331.6	0.129	48.8	246.	146.6
1	86238	23.3	0.0	0.0	7.34	468.	4696.	900.	3153.	9322.	1474.	1474.	0.	574.	400.8	0.158	60.6	232.	224.6
1	86246	25.0	0.0	0.02	7.55	630.	4572.	1449.	3078.	9812.	2162.	2162.	0.	713.	519.3	0.220	67.0	246.	279.0
1	86254	26.5	0.0	0.0	7.75	797.	5073.	2375.	3457.	11958	3429.	3429.	0.	1054.	684.2	0.287	69.3	225.	347.1
1	86260	28.8	0.0	0.08	6.85	583.	4548.	2477.	2966.	10896	3381.	3381.	0.	904.	724.2	0.310	73.0	231.	342.0
1	86266	27.0	0.0	0.01	8.06	860.	5568.	3492.	3640.	13850	4642.	4642.	0.	1150.	868.8	0.335	75.6	221.	401.9
1	86274	29.0	0.0	0.06	6.75	694.	4764.	3343.	2903.	12108	4450.	4440.	10.	1097.	760.0	0.367	75.2	232.	439.9
1	86280	28.0	0.0	0.07	4.53	602.	5076.	4168.	2030.	12512	5416.	5405.	11.	1237.	833.8	0.432	77.1	223.	499.9
1	86288	29.8	0.0	0.13	4.67	794.	5438.	4413.	2223.	13189	5687.	5528.	159.	1115.	869.9	0.419	79.6	210.	507.3
1	86294	31.5	0.0	0.57	4.85	640.	5330.	4289.	2644.	13477	5683.	5503.	180.	1214.	808.4	0.408	77.9	183.	530.6
1	86302	30.5	0.0	0.15	4.57	604.	5667.	4638.	2342.	13748	6190.	5739.	451.	1101.	881.0	0.417	80.8	196.	526.4
2	86176	7.6	0.0	0.0	0.29	0.	85.	0.	137.	222.	0.	0.	0.	0.	0.0	0.000	0.0	215.	0.0
2	86190	10.8	0.0	0.0	1.14	0.	397.	0.	492.	889.	0.	0.	0.	0.	0.0	0.000	0.0	231.	0.0
2	86204	14.3	0.0	0.0	2.45	12.	1366.	0.	1165.	2538.	7.	7.	0.	7.	0.0	0.003	0.0	211.	0.0
2	86211	15.6	0.0	0.0	4.03	247.	1940.	0.	1662.	3692.	90.	90.	0.	90.	0.0	0.024	0.0	243.	0.0
2	86218	16.8	0.0	0.0	5.28	224.	2933.	33.	2253.	5421.	235.	235.	0.	232.	37.0	0.043	12.8	235.	89.2
2	86230	21.7	0.0	0.25	6.18	378.	3767.	436.	2513.	7217.	937.	937.	0.	501.	281.0	0.130	45.0	245.	155.2
2	86232	21.8	4.8	0.28	6.02	365.	3832.	419.	2503.	7229.	895.	895.	0.	475.	293.6	0.124	46.4	241.	142.7
2	86238	23.7	17.3	1.49	5.94	549.	4106.	915.	2608.	8269.	1554.	1554.	0.	639.	431.8	0.188	59.0	228.	211.9
2	86246	25.5	41.3	4.22	4.24	552.	4616.	1438.	1807.	8438.	2015.	2015.	0.	577.	487.3	0.239	71.0	235.	295.1
2	86254	26.0	58.8	5.05	2.34	627.	4872.	1933.	1076.	8486.	2538.	2538.	0.	605.	523.2	0.299	76.2	218.	369.4
2	86260	28.0	56.5	4.77	2.10	564.	4161.	2588.	995.	8568.	3412.	3412.	0.	824.	646.7	0.398	75.8	211.	400.2
2	86266	29.5	75.7	4.15	1.75	786.	5448.	2973.	886.	10224	3890.	3890.	0.	917.	705.4	0.380	76.5	197.	421.5
2	86274	31.2	90.1	4.88	0.52	454.	3732.	2921.	270.	7664.	3718.	3662.	56.	741.	588.1	0.478	79.6	190.	496.7
2	86280	32.0	88.5	9.17	0.40	706.	3804.	3477.	234.	8355.	4409.	4316.	93.	839.	741.2	0.516	80.7	173.	469.1
2	86288	30.5	99.1	7.89	0.04	394.	3473.	2300.	19.	6258.	3876.	2766.	1110.	466.	441.0	0.442	83.2	188.	521.5
2	86294	29.0	98.6	0.0	0.04	342.	3241.	2195.	36.	5926.	4439.	2649.	1790.	454.	404.5	0.447	82.8	94.	542.6
2	86302	0.0	100.0	0.0	0.00	17.	3087.	111.	0.	3223.	2538.	136.	2402.	25.	22.9	0.042	62.0	0.	484.7

Crop Models • Cr

APPENDIX C. RUNNING MODELS UNDER THE DSSAT V3 SHELL AND AS STAND-ALONE EXECUTABLES

RUNNING UNDER THE DSSAT V3 SHELL

When running the models under the DSSAT v3 Shell (see Volume 1-3, Hunt et al. 1994, of this book, for a description of the Shell), the location of the various files are obtained from a file-locator file in the DSSAT v3 directory named DSSAT-PRO.FLE (see the Appendix to Volume 1 for a listing of this file). Each crop model is designed to first check the local directory (from where the model is run) for input files. If it does not find them in the local path, the model modules will open the DSSATPRO.FLE file to find the path of soil, weather, and crop coefficient files. Table 31 lists the various modules and files required for running the crop models and the default paths for running them under DSSAT the DSSAT v3 Shell. Note, however, that DSSAT v3 users can change these paths through the SETUP menu found under the DSSATv3 Shell (Volume 1-3, Hunt et al. 1994).

Path	Module or File Type	File Name
C:\DSSAT3	Model Driver Module	MDRIV940.EXE
C:\DSSAT3	Model Input Module	MINPT940.EXE
C:\DSSAT3	Model Executable Module	CRGR0940.EXE
C:\DSSAT3	Graphic Program	WINGRAF.EXE
C:\DSSAT3	Variable Definition File	DATA.CDE
C:\DSSAT3	File Containing Paths	DSSATPRO.FLE
C:\DSSAT3\GENOTYPE	Crop Cultivar Coefficient File	SBGR0940.CUL
C:\DSSAT3\GENOTYPE	Crop Species Coefficient File	SBGR0940.SPE
C:\DSSAT3\GENOTYPE	Crop Ecotype Coefficient File	SBGR0940.ECO
C:\DSSAT3\SOIL	Soil Data File	SOIL.SOL
C:\DSSAT3\WEATHER	Weather Data Files	UFGA7801.WTH
C:\DSSAT3\SOYBEAN	Management Inputs (FILEXs)	UFGA7801.SBX
C:\DSSAT3\SOYBEAN	Observed Field Data (Averages)	UFGA7801.SBA
C:\DSSAT3\SOYBEAN	Observed Field Data (Seasonal)	UFGA7801.SBT
C:\DSSAT3\SOYBEAN	List of Experiments	EXP.LST
C:\DSSAT3\SOYBEAN	List of Available Weather Data	WTH.LST
C:\DSSAT3\SOYBEAN	Model Output Files	GROWTH.OUT, etc.

TABLE 31.SUGGESTED ORGANIZATION OF FILES FOR EXECUTION OF CROP MODELSUNDER THE DSSAT v3 SHELL, USING CROPGRO-SOYBEAN AS AN EXAMPLE.

DSSAT v3, Volume 2 • DSSAT v3, Volume 2

Running as Stand-alone Executables

When running the DSSAT v3 crop models in stand-alone mode, all input and output data files are stored in one directory on a disk, and the executable modules are stored in a separate disk directory. One could also combine all executables with the input and output data. Table 32 lists the different files needed to run the crop models in a stand-alone mode and a suggested path structure. The example files are listed for soybean using the CROPGRO module, however a similar structure could be used for other models.

TABLE 32.SUGGESTED ORGANIZATION OF FILES FOR STAND-ALONE EXECUTION OFCROP MODELS, USING CROPGRO-SOYBEAN AS AN EXAMPLE.

Path	Module or File Type	File Name
C:\CROPGRO	Model Driver Module	MDRIV940.EXE
C:\CROPGRO	Model Input Module	MINPT940.EXE
C:\CROPGRO	Model Executable Module	CRGR0940.EXE
C:\CROPGRO	Graphic Program	WINGRAF.EXE
C:\CROPGRO	Variable Definition File	DATA.CDE
C:\CROPGRO	Batch File to Run Crop Model	GRO.BAT
C:\CROPGRO	Batch File to Run Graphics	GRAPH.BAT
C:\CROPGRO\SOYBEAN	Soil Data File	SOIL.SOL
C:\CROPGRO\SOYBEAN	Weather Data Files	UFGA7801.WTH
C:\CROPGRO\SOYBEAN	Management Inputs (FILEXs)	UFGA7801.SBX
C:\CROPGRO\SOYBEAN	Observed Field Data (Averages)	UFGA7801.SBA
C:\CROPGRO\SOYBEAN	Observed Field Data (Seasonal)	UFGA7801.SBT
C:\CROPGRO\SOYBEAN	List of Experiments	EXP.LST
C:\CROPGRO\SOYBEAN	List of Available Weather Data	WTH.LST
C:\CROPGRO\SOYBEAN	Crop Cultivar Coefficient File	SBGR0940.CUL
C:\CROPGRO\SOYBEAN	Crop Species Coefficient File	SBGR0940.SPE
C:\CROPGRO\SOYBEAN	Crop Ecotype Coefficient File	SBGR0940.ECO
C:\CROPGRO\SOYBEAN	Model Output Files	GROWTH.OUT, etc.

APPENDIX D. CONTACTS FOR CROP MODEL INFORMATION

Crop Model Driver and Crop Model Inputs Program

Dr. G. Hoogenboom

Dept. of Biological and Agricultural Engineering Georgia Station University of Georgia Griffin, GA 30223-1797, USA Phone: 1-404-228-7216 Fax: 1-404-228-7218 E-mail: ghoogen@gaes.griffin.peachnet.edu

CERES-BARLEY, MAIZE, MILLET, WHEAT, SORGHUM

DR. P.W. WILKENS

Research and Development Division International Fertilizer Development Center P.O. Box 2040 Muscle Shoals, AL. 35662, USA Phone: 1-205-381-6600 Fax: 1-205-381-7408 E-mail: p.wilkens@cgnet.com

CERES-RICE

Dr. U. Singh

Research and Development Division International Fertilizer Development Center P.O. Box 2070 Muscle Shoals, AL. 35662, USA Phone: 1-205-381-6600 Fax: 1-205-381-7408

CROPGRO-DRY BEAN

Dr. G. Hoogenboom or

DR. J.W. WHITE Centro Internacional de Agricultura Tropical Apartado Aereo 6713 Cali,COLOMBIA E-mail: j.white@cgnet.com

CROPGRO-PEANUT

DR. K.J. BOOTE

Department of Agronomy University of Florida Gainesville, FL 32611, USA Phone: 1-904-392-8535 Fax: 1-904-392-4092 or Dr. G. Hoogenboom

CROPGRO-SOYBEAN

DR. J.W. JONES

Department of Agricultural Engineering University of Florida Gainesville, FL 32611, USA Phone: 1-904-392-8694 Fax: 1-904-392-4092 E-mail: jwj@water.agen.ufl.edu or Drs. G. Hoogenboom and K. J. Boote

CROPSIM-CASSAVA

DR. L.A. HUNT OR DR. R. MATTHEWS Department of Crop Science University of Guelph Guelph, Ontario, NIG 2W1, CANADA Phone: 1-519-824-4120 Fax: 1-519-763-8933 E-mail: thunt@crop.uoguelph.ca Volume 2-3

H. Chan, P.W. Wilkens, G. Hoogenboom, J.W. Jones, D.C. Godwin

University of Hawaii, international Fertilizer Development Center, University of Georgia, University of Florida, International Benchmark Sites Network for Agrotechnology Transfer Graphing Simulated and Experiment Data • Graphing Simulated and Experiment Data • Graphing Simulated and Experiment Data

CHAPTER ONE.

A graphics program was written for DSSAT v3 to provide users with the capability to easily plot graphs that are routinely used during the development and validation of crop models. This program, called Graphing Simulated and Experiment Data, or Wingraf, adheres to the file definitions and data formats of DSSAT v3 described in Volume 2-1 (Jones et.al 1994) of this book. It is similar in operation to the graphics package in DSSAT v2.1 (IBSNAT 1989), but with notable functional and operational differences. Functionally, it allows users to plot time series graphs, Y versus X graphs, (such as grain weight vs. biomass), end of season responses (such a as yield vs. irrigation amount), and observed vs. simulation crop performance relationships for validation purposes. Operationally, users can use a mouse or keyboard commands to select variables. They can print the graph or save it to a file, change screen colors and graph scales, and create combinations of graphs that were not possible in v2.1.

The basic design of Wingraf is based on a set of codes that are used as headers over each column of data. For example, a simulated results data file may have a column of data with a header LAID, which refers to time-course values of leaf area index (LAI). If there is a corresponding field observation data file, the Wingraf program will search that file for a column of data with LAID as a header. It will then display a plot of LAI vs. time, with simulated data graphed by connecting points and observed data plotted by symbols. If the program does not find LAID in the observed data file, it will just plot simulated results. It can also be used to plot experimental data only.

A set of codes for crop, soil, and weather data are included with DSSAT v3 (see Appendix C of Volume 2-1, Jones et al. 1994, of this book for a listing of these codes). Note that these codes (left column) are followed by a short description which is used to label graphs, and a longer description with units. These codes are not rigid. Users may add their own codes and definitions to the file named DATA.CDE (see Appendix C of Volume 2-1, Jones et al. 1994, of this book), and Wingraf will correctly label any data that has this new code as a header. Note, however, that the DSSAT v3 crop models use the codes as defined in Appendix C of Volume 2-1 (Jones et al. 1994) of this book. If other crop models use other codes, this file could be changed accordingly.

Graphing Simulated and Experiment Data • Graphing Simulated and Experiment Data • Graphing Simulated and Experiment Data

CHAPTER TWO. PROGRAM OVERVIEW

Guidelines

GENERAL

Wingraf was developed to run under the DSSAT v3 Shell (see Volume 1-3, Hunt et al. 1994, of this book) or as a stand-alone program (see note below). It uses TurboVision¹ for the user interface routines. The user interfaces with the program via menus and dialog boxes and the program displays information via windows. Wingraf supports the use of a mouse, provided a mouse driver has been loaded prior to the execution of this program. Both mouse and keyboard commands can be used in Wingraf, but the user interface is most easily exploited by the use of the mouse, and as such, examples cited in this Part refer to mouse actions. If using a keyboard, however, nearly all menu choices may be selected by use of the <ALT> key as well as with the highlighted letter of the menu option. The <TAB> and <SHIFT><TAB> keys can be used for moving through choices in dialog boxes.

NOTE: When running Wingraf as a stand-alone program, the options to execute the program are as follows:

- 1. If running Wingraf under the Wingraf program directory, type "WINGRAF".
- 2. If running Wingraf under the data file directory, type "\DSSAT3\WINGRAF" at the DOS System C> prompt.
- 3. If the Wingraf program directory is included in the system's PATH, type "WINGRAF" at the DOS System C> prompt.

SCREEN "BUTTONS"

In all Wingraf screens, where multiple buttons are available (e.g., the OK button in Screen 1, on following page, or the PREVIOUS, NEXT, X VARIABLE, GRAPH, RESET, OPTION buttons in Screen 3 in Chapter 3), you may "press" these by one of two methods:

- 1) If using a mouse, click on the button.
- 2) If using the keyboard, highlight the button using the <TAB> and <SHIFT> <TAB> keys and then press the <ENTER> key.

¹ TurboVision is a registered trademark of Borland International, Inc.

Menu Structure

The Wingraf main menu options are selected by a single click with a mouse on a menu choice, which will either execute an action, present a submenu, or display a dialog box requiring further user input. From the keyboard, use the arrow keys to move through and highlight the main menu items. Press the <ENTER> key when the menu item you wish to open is highlighted.

Selecting the "J" symbol in the upper left corner of the Wingraf main menu display, allows you to exit Wingraf, or alternatively, to display the "About" screen (Screen 1, below).

A context-sensitive help function is provided throughout the entire program. The <F1> key invokes the help system.

∃ S elect Graph (Options Exit	
	[•] About	
	DSSAT Version 3.0	
	Crop Models Graphics	
	by	
	IBSNAT, 1994	
	Ok	
Fl Help Esc Esca	pe X-Var.: Time	Simulation: Default

HARDWARE

Wingraf requires a minimum configuration of a 286SX or better processor running EMM386 with expanded memory with a math-coprocessor. DOS version 5.0 or higher is recommended. Wingraf requires 640K of random access memory (RAM), with a minimum of 420K free RAM running under the DSSAT v3 Shell. Wingraf supports most text and graphics display modes, but VGA color is recommended for clarity. In addition, if hardcopy output is needed, a supported printer is required.

CHAPTER THREE. EXECUTE PROGRAM

Wingraf can be accessed through the DSSAT v3 Shell under three different entry points. To display graphs of measurements made within the growing season (time series graphs) and summary responses, open the Wingraf program under the Shell's DATA main menu item. To do this, highlight DATA and then select the "X Experiment" option by using the mouse, pressing the <X> key or by moving the highlight bar with the arrow keys to the"X Experiment" option and pressing the <ENTER> key. From the "X Experiment" menu, select the "Utilities" option. A list of three menu options will be presented. Select the "G Graph" menu option and then select a crop from the window that is presented. The Wingraf main menu screen will be presented (see Screen 2 in Chapter 4).

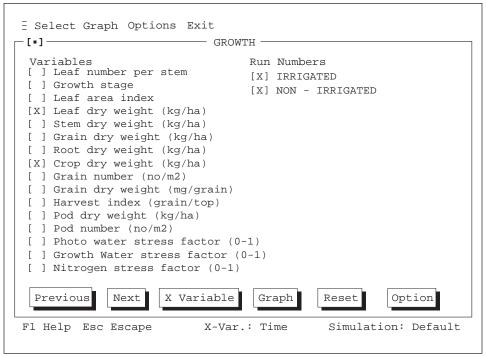
To plot simulated and experimental data, open Wingraf under the Shell's MODEL main menu item. Please note that you must first run one of the DSSAT v3 crop models listed under the MODEL menu item before using the Wingraf program or no simulated data will be available for graphing.

Wingraf is found in two places under the MODEL main menu item. The first can be found by selecting the "O Other" item from the list of options in the pull-down MODEL menu. Select this item and a submenu of various options is presented, including "G Graph." Select "G Graph" to open Wingraf. Alternatively, after selecting one of the crop models in the MODEL pull-down menu, a third tier menu is presented, which includes "G Graph." Again, select "G Graph" to open Wingraf.

When "G Graph" is selected from these selection points, the Wingraf main menu screen is presented (see Screen 2 in Chapter 4). The top line of this screen, with SELECT GRAPH, OPTIONS and EXIT, is the menu bar. Each item in this menu bar has a related pull-down menu. To access these menus, click on the menu item with the mouse and the pull-down menus will be presented. With the keyboard, use the arrow keys to move through the menu bar and the pull-down menus under each will be presented. To select items in these menus, either click on one with the mouse, use the arrow keys to highlight an item in the pull-down menu and press the <ENTER> key or press the first letter of the item. For example, press <G> to open "Growth" under the Select Graph menu bar item.

Graphing Simulated and Experiment Data • Graphing Simulated and Experiment Data • Graphing Simulated and Experiment Data

CHAPTER FOUR. GRAPH MENU


Under the SELECT GRAPH menu item are displayed the primary plotting functions in Wingraf (Screen 2, below). Growth, water, nitrogen, diseases and pests, and carbon output files are directly supported and use the DSSAT v3 standard output files, GROWTH.OUT, WATER.OUT, NITROGEN.OUT, PEST.OUT, and CARBON.OUT, respectively. The phosphorus option is included for compatibility with future model outputs.

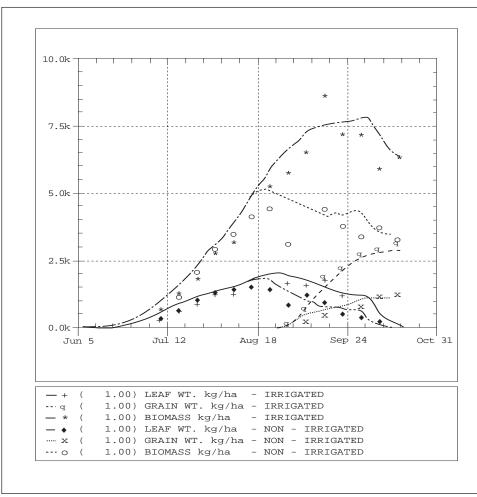
Growth				
Nitrogen				
Diseases & Pests				
C arbon				
U ser Selected Variabl	es 🕨			
Summary V alidation	►			
Summary Response				
		.: Time	Simulation:	

SCREEN 2.

GROWTH, WATER, NITROGEN, PHOSPHORUS, DISEASES & PESTS, CARBON OPTIONS

Selecting one of these options enables the user to plot a graph for the selected function. The screens presented when any one of these options is selected are similar. Thus, the screens for "Growth" will be used for illustration. When the "Growth" option is selected, Screen 3, on the following page, is presented.

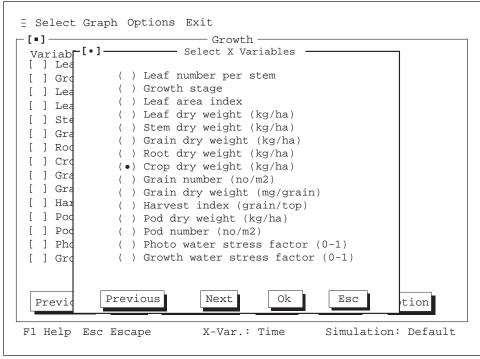
SCREEN 3.


SELECTING PLOTS

In Screen 3, users may select up to 6 plots for each graph. These six plots may be one variable with six runs, six variables with one run, or any combination of variables and runs up to 6. Selecting the RESET button will reset all current selections.

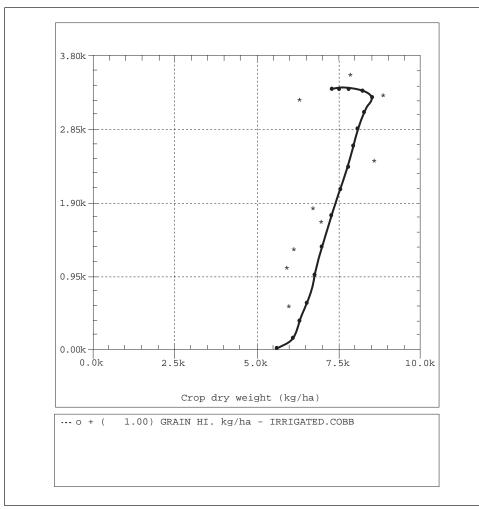
In example Screen 3, two variables, "Leaf dry weight (kg/ha)" and "Crop dry weight (kg/ha)," have been selected and two runs, "IRRIGATED" and "NON-IRRIGATED."

Pressing the GRAPH button displays the graph of these variables and runs (see Screen 4, on following page).


NOTE: The OPTION button on the status line in Screen 3 is grayed out and will not be selectable until the first graph has been plotted.

SCREEN 4.

X-VARIABLE


The default setting for graph plotting is the variables selected (for example, those selected in Screen 3) versus time. Users can specify an X-variable other than "time" by pressing the X VARIABLE button (see Screen 3). Screen 5, on the following page, will be presented.

SCREEN 5.

In Screen 5, the X-variable, "Crop dry weight," has been selected. Pressing the OK button in this screen, will display this variable next to "X-Var:" on the status line in Screen 3. Pressing the GRAPH button in Screen 3 will display this case of Y vs X, as shown in Screen 6, on the following page.

To reset the X variable back to time, select the X VARIABLE button again and press the <ESC> key.

SCREEN 6.

OPTION "BUTTON"

Once a graph has been plotted for selected variables, the OPTION button on the status line (see Screen 3) will no longer be grayed out and will be selectable.

Functions under the OPTION button (see Screen 7, on following page) allow a user to make necessary modifications to the current graph.

"Display Graph Again" will display the modified graph again.

"Change Min/Max" allows the parameters for the X and Y axes to be changed (see Screen 8, on following page).

[•] GRO			
Variables	Run	Numbers	
[X] Leaf number per stem	[X]	IRRIGATED	
[X] Growth stage	[X]	NON-IRRIGATED	
[X] Leaf area index			
[] Leaf dry weight (kg/ha)			
[] Stem dry weight (kg/ha)			
[] Grain dry weight (kg/ha)			
[] Root dry weight (kg/ha)			
[] Crop dry weight (kg/ha)			
[] Grain number (no/m2)			
[] Grain dry weight (mg/grain			
[] Harvest index (grain/top)	.)		
[] Pod dry weight (kg/ha)		Display Graph Again	F7
[] Pod number (no/m2)		Change Min/Max	
[] Photo water stress factor	,	Modify Multipliers	
[] Growth Water stress factor	(0-1)		F4
		Output Graph	F8
		Print Graph Data	F9
Previous Next X Variable	Gra		

SCREEN 7.

"Modify Multipliers" allows the user to modify the default multiplication factor for each plot (see Screen 9, on following page). Altering multipliers allows variables of widely disparate scaling to be shown on the same graph.

"Grid ON" toggles the plotting of grid lines On/Off.

Variable	-	GROWT	Run Numbers		
[X] Leaf	number per	stem —— Change Min	[X] IRRIGAT]
] Lear] Stem] Grai	Min X:	160.0000	Max X:	309.0000	
] Root] Crop] Grai] Grai] Harv] Pod	Min Y:	0.0000	Max Y:	16.0000	
] Pod] Phot] Grow		Ok	Esc		
Previou	Next	X Variable	Graph	Reset Opt	ion

SCREEN 8.

[•]	-] Change Multip	liers
[X] Leaf		
[X] Grov		
[X] Leaf	Multiplier #1:	1.00
[] Leaf	Multiplier #2:	1.00
[] Sten	Multiplier #2.	1.00
[] Grai	Multiplier #3:	1.00
[] Root	Multiplier #4:	1.00
[] Crop [] Grai	Mulcipilei #4.	1.00
[] Grai	Multiplier #5:	1.00
[] Harv	Multiplier #6:	1.00
[] Pod	Harolpilor No	1.00
[] Pod		
[] Phot	Ok	Esc
[] Grov		
Previous	Next X Variable Gr	aph Reset Option

SCREEN 9.

"Output Graph" allows the user to output the current graph to either a printer or a disk file (see Screen 10, below).

Variables	Run Numbers
Variables [X] Leaf number per stem	[X] IRRIGATED
[X] Growth stage	• • -
[X] Leaf area index	[X] NON - IRRIGATED
[] Leaf dry weight (kg/ha) [] Stem dry wei	Confirm
[] SCEIII OLY WEL	
[] Grain dry we	
	t: Screen Dump
	e: HP Laser Jet
	Port: LPT1
[] Grain dry we	
[] Harvest inde	
[] Pod dry weig Ok	Cancel
[] Pod number (
[] Photo water	
[] Growth Water stress facto	r (0-1)
Previous Next X Variable	Graph Reset Option
Previous Next X Variable	Graph Reset Option
	r.: Time Simulation: Default

SCREEN 10.

"Print Graph Data" allows the user to send the current plot data (and observed data, if present) to the printer or a disk file (see Screen 11, below) in an X-Y format (see Table 1 for an example file of the plot data).

[•]	
Variables	
[] Leaf number per stem	[X] IRRIGATED
[] Growth stage	[X] NON - IRRIGATED
[] Leaf area index [] Leaf [•] [] Stem	- Print XY Data
[X] Grain Print Destinat	ion
[] Root () Print dat	a to file
[] Crop (•) Print dat	a to printer
[] Grain	
Output File Pa	th C:\WINGRAF\XYOUT.DAT
[] Harve	
	Ok Esc
[] Pod 1	
[] Photo water stress fo	actor (0-1)
[] Growth Water stress :	
, stowen nater stress	
Previous Next X Van	riable Graph Reset Option

SCREEN 11.

TABLE 1. EXAMPLE FILE OF SIMULATED AND OBSERVED DATA USED TO PLOT THE GRAPH FOR THE GROWTH VARIABLE, "GRAIN DRY WEIGHT" (GWAD).

	SIMULATH	ED DAT	A		OBSERVI	ed da	TA
@Day	GWAD	Day	GWAD	Day	GWAD	Day	GWAD
@ X1	Yl	X2	Y2	OX1	OY1	OX2	OY2
166	0.000	166	0.000	194	0.000	194	0.000
169	0.000	169	0.000	201	0.000	201	0.000
172	0.000	172	0.000	208	0.000	208	0.000
175	0.000	175	0.000	215	0.000	215	0.000
178	0.000	178	0.000	222	0.000	222	0.000
181	0.000	181	0.000	229	0.000	229	0.000
184	0.000	184	0.000	236	0.000	236	0.000
187	0.000		0.000	243	0.000		0.000
190	0.000		0.000	250	182.000		42.000
193	0.000		0.000	257	754.000		253.000
196	0.000		0.000	264	1912.000		471.000
199	0.000		0.000	271	2223.000		775.000
202	0.000		0.000	278	2730.000		782.000
205	0.000		0.000	285	2913.000		1149.000
208	0.000		0.000	292	3169.000	292	1206.000
211	0.000		0.000				
214	0.000		0.000				
217	0.000		0.000				
220	0.000		0.000				
223 226	0.000		0.000 0.000				
220	0.000		0.000				
229	0.000		0.000				
235	0.000		0.000				
238	0.000		0.000				
241	0.000		0.000				
244	0.000		0.000				
247	29.000		29.000				
250	142.000		128.000				
253	323.000		261.000				
256	580.000	256	418.000				
259	938.000	259	556.000				
262	1290.000	262	634.000				
265	1589.000	265	689.000				
268	1870.000	268	779.000				
271	2127.000	271	836.000				
274	2314.000	274	940.000				
277	2549.000	277	1031.000				
280	2695.000	280	1070.000				
283	2764.000		1098.000				
286	2836.000		1118.000				
289	2872.000	289	1129.000				
292	2891.000						
294	2899.000						

USER-SELECTED VARIABLES OPTION

When this option is selected, a submenu with two menu items is presented. These allow you to create a file for graph plotting and to define your own list of variables for graphing.

DEFINE

With this menu item, users can create a file for graph plotting provided the file format follows the output file format specified in Part 1 of this Volume (Volume 2-1, Jones et al. 1994). A user-defined file may contain many of the predefined variables in DATA.CDE (see Appendix C of Volume 2-1, Jones et al. 1994). If additional variables are to be plotted, the user may append variable codes and definitions to the DATA.CDE file.

USER-SELECTED

With this menu item, users can select their own variables from those found in the GROWTH, WATER, NITROGEN, DISEASES, PESTS, and CARBON output files. When this item is selected, a window similar to Screen 12, below, is presented. Screen 12 is an example screen showing the list of variables for the GROWTH output file. The right-hand lists presents the Wingraf default GROWTH vari-

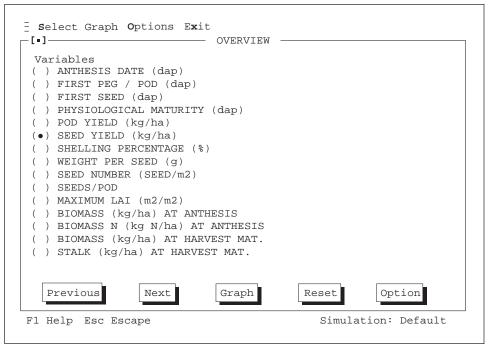
<pre>[•] User-Select Variables [] Leaf number per stem [] Growth stage [X] Leaf area index [X] Leaf dry weight (kg/ha) [] Stem dry weight (kg/ha) [] Grain dry weight (kg/ha) [] Crop dry weight (kg/ha) [] Grain number (no/m2) [] Grain dry weight (mg/grain) [] Harvest index (grain/top) [] Pod dry weight (kg/ha) [] Pod number (no/m2) [] Photo water stress factor (0- [] Growth Water stresstress factor (0- [] Growth Water st</pre>	User-Selected [] Leaf area index [] Leaf dry weight (kg/ha) [] Avg plant transpiriation (mm/d) [] Avg evapotranspiriation (mm/d) [] Avg potential evapotr (mm/d) [] Avg potential evapotr (mm/d) [] Lable P Pool (kg/ha) [] Lable P Pool (kg/ha) [] Stable P Pool (kg/ha) [] Stable P Pool (kg/ha) [] Percent C in leaf (%) [] Percent C in stem (%)
Previous	Ok Esc Reset

SCREEN 12.

ables. The list on the left presents GROWTH output variables which the user may select. After defining the variable list, by putting an "x" beside those variables to be used, users may plot graphs of variables from different variable groups. In this way, key variables from different output files can be displayed simultaneously.

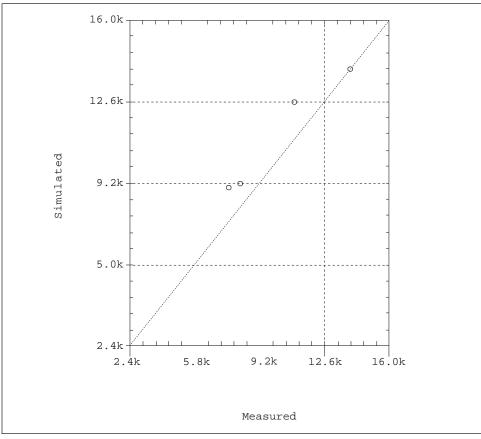
SUMMARY VALIDATION OPTION

This option allows you to visually compare simulated and measured results for a given experiment. Two options are available for summary validations (Screen 13. below). In each case, the model output file, OVERVIEW.OUT, is used.


E Select Graph Options Exit	
Growth Water Nitrogen Phosphorus Diseases & Pests Carbon	
User Selected Variables Summary Validation Single plotting Double plotting	
F1 Help Esc Escape X-Var	.: Time Simulation: Default

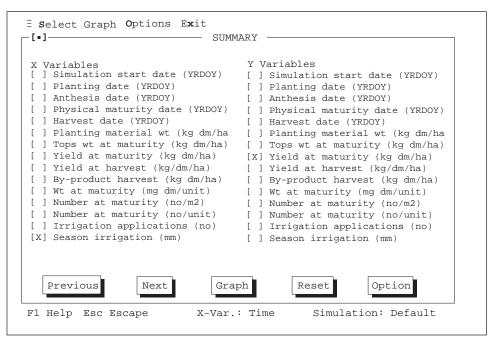
SINGLE PLOTTING

Use "Single Plotting" to select one, and only one, of the variables listed when this menu item is selected (see Screen 14, on following page) for simulated versus observed data plotting. Observed data would be those found in FILEA (see Volume 2-1, Jones et al. 1994, for a description of this file) for a particular experiment. For example, FILEA for experiment UFGA8601.SBX, would be file, UFGA8601.SBA.


When "Single Plotting" is selected, Screen 14 (on following page) is presented.

SCREEN 13.

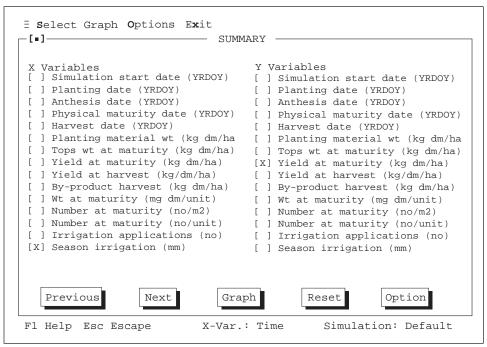
SCREEN 14.


In Screen 14, "Seed Yield," has been selected as the variable to be plotted for simulated vs. observed (or measured). Pressing the GRAPH button will display this graph, as shown in Screen 15, on following page.

SCREEN 15.

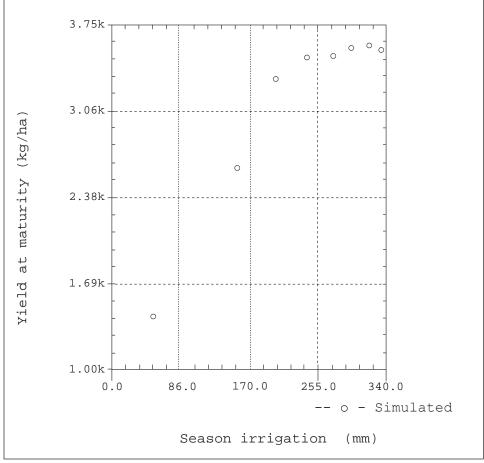
DOUBLE PLOTTING

Use "Double Plotting" to select only one X and only one Y variable of the variables listed when this menu item is selected (see Screen 16, on following page) for X vs. Y plotting.



SCREEN 16.

SUMMARY RESPONSE OPTION


This option is used for summary graph plotting. Only one X and one Y variable can be selected for graph plotting. When this option is selected, Screen 17 (on following page) is presented.

Experiment Data • Graphing Simulated and Experiment Data • Graphing Simulated and Experiment Data • Graphing Simulated and

SCREEN 17.

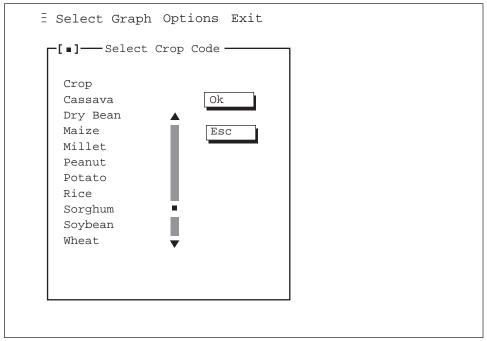
In Screen 17, "Season irrigation" has been selected as the X-variable and "Yield at maturity" as the Y-variable. Pressing the GRAPH button will display this graph, as shown in Screen 18, on following page.


SCREEN 18.

In Screen 18, the example graph displays "Yield at harvest" plotted against "Season irrigation."

CHAPTER FIVE. OPTIONS MENU

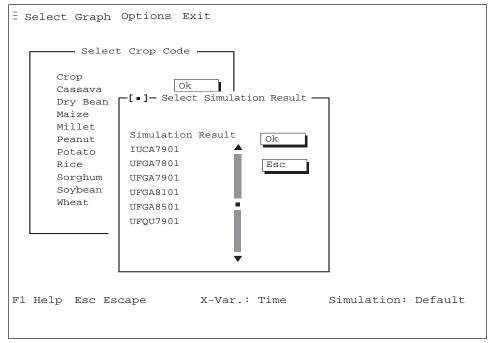
The OPTIONS menu item allows the user to select previously run simulations and to modify the operation, look and feel of Wingraf. The user may define most of the operational parameters, configure Wingraf, and select previous simulations (Screen 15).


When the OPTIONS menu item is selected, the pull-down menu shown in Screen 19 (below) is displayed.

SCREEN 19.

SELECT SIMULATION OPTION

With this option, users can select previously simulated results provided the default output file names have been changed. Selecting this option opens the crop dialog box shown in Screen 20 (on following page).



SCREEN 20.

If simulations have been run for any of the crops listed in this box and the output file names have been changed from the default names (e.g., from GROWTH.OUT), then selecting one will present a listing of output files. For example, if Soybean is selected from the crop code dialog box in Screen 20, and the output names have been changed, then those files will be displayed. For the UFGA7801-Soybean experiment, these might be, UFGA7801.SBG, UFGA7801.SBW, UFGA7801.SBN for GROWTH.OUT, WATER.OUT, NITROGEN.OUT, respectively.

When one of the crops listed is selected and simulations have been run with output names changed, then Screen 21 (on following page) will appear.

If no previous simulation results have been saved with the experimentcoded file names described above, a message will appear on the screen to inform the user of this.

SCREEN 21.

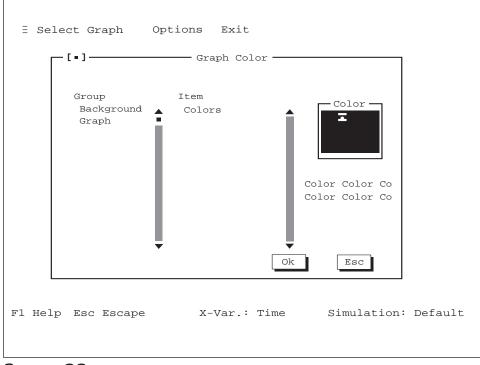
In Screen 21, a listing of available simulation results is presented. Any listed simulation may be chosen and then plotted.

COLORS OPTION

Colors for both graphics and the desktop may be selected by choosing the Colors menu option (Screen 22, below).

E Select Graph	Options Exit	
	Select Simulation	•
	Graph Color Desktop Color	2
Fl Help Esc Es	cape X-Var.: Time	Simulation: Default

SCREEN 22.

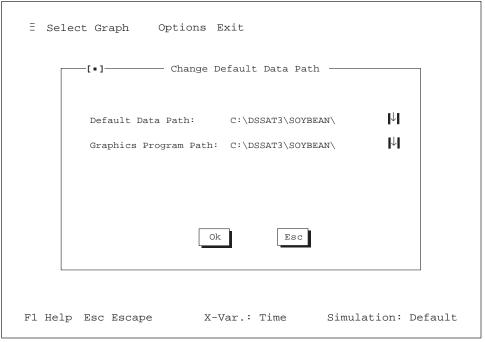

GRAPH COLOR

Select "Graph Color" to define the colors used for graph plotting, such as graph background and line color. When "Graph Color" is selected, a listing of color schemes is presented (see Screen 22, above).

Select one of the first four items listed and the graph background and line color will be adjusted to that described in each listing. For example, if "Auto Detect Scheme" is selected, the program will use its default colors. Or, if "Black/White Scheme" is selected, the program will convert colors to black and white.

If "Color Setting" is selected, the user may customize the colors used according to his/her individual preference. When this menu item is selected, Screen 23 (on following page) will be presented.

Experiment Data • Graphing Simulated and Experiment Data • Graphing Simulated and Experiment Data • Graphing Simulated and


SCREEN 23.

DESKTOP COLOR

Use "Desktop Color" to customize the desktop color scheme as well as the color setting for individual desktop displays. When "Desktop Color" is selected, a screen similar to the one shown in Screen 23 (above) will be presented, in which a user can select colors for background color of the desktop, dialog boxes, menus, the viewer and so on.

DIRECTORIES OPTION

This option allows the user to change the default path for graph plotting. When this option is selected, Screen 24, below, is presented. The Graphics Program Path, which can also be changed in Screen 24, will not normally need to be changed.

SCREEN 24.

Set Graph Options

This option allows the user to specify various graph options as shown in Screen 25, below.

∃ Selec	t Graph Options Exit
	[.] Graph Options
	<pre>X-Axis Label Experimental data (•) Day of Year (•) Plot () Days after planting () Don't plot () Prompt if available</pre>
	X vs Y Plotting Simulated Data () Connect points (•) Plot () Symbols (•) Both symbols & points
	Num of Intervals: 4 Tics/Interval: 5
	Ok
F1 Help	Esc Escape X-Var.: Time Simulation: Default

SCREEN 25.

Make selections in Screen 25 and then press the OK button to save them. Press the ESC button if you do not wish to save your selections.

NOTE: If under the Simulated Data option, "Don't plot" has been selected, then the pull-down menu under the SELECT GRAPH menu item of the Wingraf main menu screen will change as shown in Screen 26, on following page.

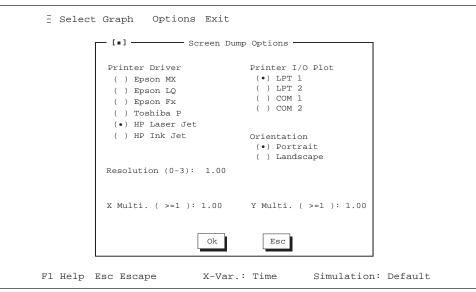
Ξ	sel	ect (Graph	O ptions	Exit			
	Fi	eld 1	Data					
	s u	mmary	y Respons	se				
Fl	Help	Esc	Escape	X-7	/ar.:	Time	Simulation:	Default

SCREEN 26.

When "Don't plot" is selected from the Simulated Data options in Screen 25, you must open the "Field Data" menu item under SELECT GRAPH and select a field data file for graph plotting. When "Field Data" is selected, Screen 27 (below) is presented with a listing of data files available.

Ξ	Selec	t Gra	aph Options Exit
			[•] — Select Experimental Data File —
			Data File Name IUCA7901.SBT Ok
			Files IUCA7901.SBT UFGA7801.SBT UFGA7901.SBT UFGA8101.SBT UFGA8501.SBT UFQU7901.SBT
			<pre> C:\DSSAT3\EXPER\SOYBEAN\??????.SBT IUCA7901.SBT 14389 Apr 13, 1994 10:00am </pre>
F1	Help	Esc	Escape X-Var.: Time Simulation: Defa
Sci	REEN 2	27.	

OUTPUT DEVICE OPTIONS


This option allows the user to configure both screen dump output and plotter/file output When this option is selected, Screen 28 (below) is presented..

E S elect Graph	Options Exit	
	Select Simulation Colors Directories Set Graph Options Select Field Data File Output Device Options	
	Screen Dump Output File and Plotter Output	
Fl Help Esc Es	scape X-Var.: Time Simul	ation: Default

SCREEN 28.

SCREEN DUMP OUTPUT

Use "Screen Dump Output" to set up the graph output option as a screen-dump and to select a printer device, printer port, orientation, and other options shown in Screen 29 (on following page).

SCREEN 29.

FILE AND PLOTTER OUTPUT

Use "File and Plotter Output" to select the graph output option to file output or to both plotter output and file output (see Screen 30, below). The output file can be in either HPGL or Postscript format. The graph file can be imported into other graphic editors, word processing program or drawing programs for further modification.

Ξ	Select Graph Options Exit
	[=] Plotter/File Output Options
	Plotter TypeOrientation(•) HPGL(•) Portrait() Postscript() Landscape
	Plotter Com Port (•) COM1 (•) COM2 Plotter Output Option () Both Plotter & File (•) File Output Only
	File Name: C:\DSSAT3\SOYBEAN\OUTPUT00.GRA
	Ok

SCREEN 30.

SAVE GRAPH OPTIONS

Changes made with the "Set Graph Options" or "Save Options" menu items under OPTIONS in the Wingraf main menu saves selected configurations to the file called GRAPH.INI. Normally, Wingraf configuration data will be handled and updated through the Wingraf menu structure. You may wish, however, to edit GRAPH.INI with a text editor. Thus, a listing of the contents of GRAPH.INI which pertains to Wingraf is shown in Table 2.

Two sections of GRAPH.INI hold configuration data for Wingraf and for the default output device. Under the [WINGRAF] section of the GRAPH.INI file, defaults for plotting in Wingraf are defined. Specifically, they are:

gcolor0 to gcolor7:	Refer to the default color palette for plotting.
interval:	Number of major divisions on the X and Y axis.
tics:	Number of tic marks between the major divisions.
days:	'D' for day after planting date; 'Y' for day of year.
symbols:	'C' for connect symbols with lines; 'S' for plotting.
	symbols alone; or "B" for both symbols and lines.
thickness:	'T' for thick lines; 'N' for normal width lines
plot:	'P' for plot simulated data; 'D' for don't plot
	simulated data.
exp:	'A' for always plot experimental data; 'N' for never plot; or
'P' for	prompt when data are available.

Under the [Device] section of the INI file, defaults for the selected output device in Wingraf are defined. Specifically, they are:

output:	'S' for screen Dump; 'P' for plotter and file output; or 'F' for
file	alone.
driver:	"0" for Epson MX; "1" for Epson LQ; "2" for Epson FX; "3"
for	Toshiba P; "4" for HP Laser Jet; or "5" for HP Ink
Jet.	
plotter:	"0" for HPGL or "1" for Postscript.
port:	"0" for LPT1; "1" for LPT2; "2" for COM1; or "3" for COM2.
orientation:	"0" for Portrait or "1" for Landscape.
resolution:	Resolution.
xmult:	X-multiplier.
ymult:	Y-multiplier.
file:	Name for file output.

[WINGRAF]
gcolor0=1
gcolor1=15
gcolor2=14
gcolor3=12
gcolor4=15
gcolor5=10
gcolor6=11
gcolor7=13
interval=4
tics=5
days=Y
symbols=B
thickness=T
plot=P
exp=N
[Device]
output=F
driver=1
plotter=1
port=2
orientation=0
resolution=1.00
xmult=1.00
ymult=1.00
file=C:\WINGRAF\OUTPUT00.GRA

TABLE 2. Example of a Wingraf GRAPH.INI File.

REFERENCES

- Hunt, L.A., J.W. Jones, P.K. Thornton, G. Hoogenboom, D.T. Imamura, G.Y. Tsuji and U. Singh. 1994. Accessing data, models and application programs. *In*: Tsuji, G.Y.,
 G. Uehara and S. Balas (eds.). DSSAT v3. Vol. 1-3. University of Hawaii, Honolulu, HI.
- International Benchmark Sites Network for Agrotechnology Transfer Project.
 1989. Decision Support System for Agrotechnology Transfer Version 2.1 (DSSAT V2.1). Dept. Agronomy and Soil Sci.; College of Trop. Agr. and Human Resources; University of Hawaii; Honolulu, HI.
- Jones, J.W., L.A. Hunt, G. Hoogenboom, D.C. Godwin, U. Singh, G.Y. Tsuji,
 N. Pickering, P.K. Thornton, W.T. Bowen, K.J. Boote and J.T. Ritchie. 1994.
 Input and output files. *In:* Tsuji, G.Y., G. Uehara and S. Balas (eds). DSSAT v3. Vol. 2-1. University of Hawaii, Honolulu, HI.

Graphing Simulated and Experiment Data • Graphing Simulated and Experiment Data • Graphing Simulated and Experiment Data

NOTES: