Dry bean (common bean, Phaseolus vulgaris) is the most important food legume grown globally. The CROPGRO-Dry bean model was developed from the BEANGRO model (Hoogenboom et al., 1994; White et al., 1995), which was adapted from SOYGRO using datasets from the International Center for Tropical Agriculture (CIAT), the University of Florida and published papers (Hoogenboom et al., 1994; White et al., 1995). The overall physiology of soybean and common bean proved very similar, so the main modifications related to differences in phenology, plant composition, and organ sizes (especially to allow for large-seeded bean cultivars).  The CSM-CROPGRO-Dry bean model shares the same source code as the other CROPGRO-legume models (Hoogenboom et al., 1992; Boote et al., 1998; Jones et al., 2003), but has its own species and cultivar trait files.  It uses the same hedge-row light interception model (Boote and Pickering, 1994) combined with a leaf-scale photosynthesis model based on the Farquhar approach for simulating response to CO2.

Performance of the original BEANGRO model (Hoogenboom et al., 1994) was assessed for a series of field trials conducted at CIAT (White et al., 1995). A subsequent application was to demonstrate the importance of photoperiod sensitivity in adaptation of common bean lines to rainfed systems in the highlands of Mexico (Acosta-Gallegos and White, 1995).  The temperature responsiveness of the CSM-CROPGRO-Dry bean model was evaluated and improved based on data collected in elevated temperature experiments in sunlit, controlled-environment chambers (Boote et al., 2018).

The BEANGRO model was also used as a platform to estimate genotype-specific parameters (GSPs) from genetic information, resulting in the GENEGRO model (White and Hoogenboom, 1996; Hoogenboom et al., 1997). The approach was subsequently extended to CROPGRO (Hoogenboom and White, 2003; Boote et al., 2016) and has been applied in soybean, sorghum and wheat. For further information see the discussions of estimating GSPs (Boote et al., 2016; Wallach et al., 2018).

The CSM-CROPGRO-Dry bean model has been applied for irrigation and drought management (Hoogenboom et al., 1988; Heinemann et al., 2000; Nunez-Barrios et al., 2005), salinity (Webber et al., 2010), weed management (Saberali et al., 2012, 2016), agroclimatic zoning (Belay et al., 1998; Meireles et al., 2002), planting date evaluation (Dallacort et al., 2008), and yield and evapotranspiration prediction (Dallacort et al., 2010, 2011)


  • Acosta-Gallegos, J.A., and J.W. White. 1995. Phenological plasticity as an adaptation by common bean to rainfed environments. Crop Science 35, 199-204. 
  • Belay, S., C. Wortman, and G. Hoogenboom. 1998. Haricot bean agroecology in Ethiopia: Defining using agroclimatic and crop growth models. African Crop Science Journal 6(1):9 18.
  • Boote, K. J., J. W. Jones, G. Hoogenboom, and N. B. Pickering.  1998.  The CROPGRO Model for Grain Legumes.  pp. 99-128.  In G.Y Tsuji, G. Hoogenboom, and P.K. Thornton (eds.) Understanding Options for Agricultural Production. Kluwer Academic Publishers, Dordrecht.
  • Boote, K.J., and N.B. Pickering. 1994. Modeling photosynthesis of row crop canopies. HortScience 29:1423–34.
  • Boote, K.J., V. Prasad, L.H. Allen Jr, P. Singh, and J.W. Jones. 2018. Modeling sensitivity of grain yield to elevated temperature in the DSSAT crop models for peanut, soybean, dry bean, chickpea, sorghum, and millet. European Journal of Agronomy 100:99-109. 
  • Boote, K. J., C. E. Vallejos, J. W. Jones, and M. J. Correll.  2016.  Crop modeling approaches for predicting phenotype of grain legumes with linkage to genetic information.  Chapter 8. Pp. 163-192. In: X. Yin & P.C. Struik (eds.), Crop Systems Biology, Springer International Publishing, Switzerland.
  • Dallacort, R., R. Rezende, P.S.L. de Freitas, R.T. de Faria, T.L. de F. Azevedo, and J.B. Tolentino Júnior. 2008. Utilização do modelo CROPGRO-Drybean na determinação das melhores épocas de semeadura da cultura do feijão para a região de Maringá, Estado do Paraná, Brasil. Acta Scientiarum Agronomy 27(2):349-355. https://doi.org/10.4025/actasciagron.v27i2.1855
  • Dallacort, R., P.S.L. de Freitas, R.T. de Faria, A.C.A. Goncalves, R. Rezende, and R.M.L. Guimarães. 2011. Simulation of bean crop growth, evapotranspiration and yield in Paraná State by the CROPGRO-Drybean model. Acta Scientiarum Agronomy 33(3):429-436. https://doi.org/10.4025/actasciagron.v33i3.11793
  • Dallacort, R., P.S.L. de Freitas, R.T. de Faria, A.C.A. Gonçalves, , A.G. Jácome, and R. Rezende. 2010. Soil water balance simulated by CROPGRO-Drybean model for edaphoclimatic conditions in Maringá. Revista Brasileira de Engenharia Agrícola e Ambiental 14(4):351-357. https://doi.org/10.1590/S1415-43662010000400002
  • Heinemann, A.B., G. Hoogenboom, G.A. Georgiev, R.T. de Faria, and J.A. Frizzone. 2000. Center pivot irrigation management optimization of dry beans in humid areas. Transactions of the ASAE. 43(6):1507-1516.
  • Hoogenboom, G. J. W. Jones, and K. J. Boote. 1992. Modeling growth, development and yield of grain legumes using SOYGRO, PNUTGRO, and BEANGRO: A Review. Transactions of the ASAE 35(6):2043-2056.
  • Hoogenboom, G., J. W. Jones and J. W. White. 1988. Use of models in studies of drought tolerance. p. 192-230. In: [J. W. White, G. Hoogenboom, F. Ibarra and S.P. Singh, Editors] Research on Drought Tolerance in Common Bean. Centro Internacional de Agricultura Tropical, Cali, Colombia.
  • Hoogenboom, G., J.W. White, J.W. Jones, and K.J. Boote. 1994. BEANGRO: A process-oriented dry bean model with a versatile user interface. Agronomy Journal 86:182-190.
  • Hoogenboom, G., J.W. White, J. Acosta-Gallegos, R. Gaudiel, J.R. Myers, and M.J. Silbernagel. 1997. Evaluation of a crop simulation model that incorporates gene action. Agronomy Journal 89:613-620.
  • Hoogenboom, G., and J.W. White. 2003. Improving physiological assumptions of simulation models by using gene-based approaches. Agronomy Journal 95, 82-89.
  • Jones, J.W., G. Hoogenboom, C.H. Porter, K.J. Boote, W.D. Batchelor, L.A. Hunt, P.W. Wilkens, U. Singh, A.J. Gijsman, and J.T. Ritchie. 2003. The DSSAT Cropping System Model. European Journal of Agronomy 18:235–65.
  • Meireles, E.J.L., A.R. Pereira, P.C. Sentelhas, L.F. Stone,  and F.J.P. Zimmermann. 2002. Calibration and test of the CROPGRO-Dry bean model for edaphoclimatic conditions in the savanas of Central Brazil. Scientia Agricola 59(4):723-729. https://doi.org/10.1590/S0103-90162002000400016
  • Munz, S., W. Claupein, and S. Greaff-Hönninger. 2014. Growth of bean strip-intercropped with maize: Evaluation of the CROPGRO model. Agronomy Journal 106(6):235-2247.
  • Nunez-Barrios, A., G. Hoogenboom, and S. NeSmith. 2005. Drought stress and the distribution of vegetative and reproductive traits of a bean cultivar. Scientia Agricola 62(1):18-22.
  • Oliveira, Evandro Chaves de, Costa, José Maria Nogueira da, Paula Júnior, Trazilbo José de, Ferreira, Williams Pinto Marques, Justino, Flávio Barbosa, & Neves, Leonardo de Oliveira. (2012). The performance of the CROPGRO model for bean (Phaseolus vulgaris L.) yield simulation. Acta Scientiarum. Agronomy34(3), 239-246. https://doi.org/10.1590/S1807-86212012000300002
  • Saberali, S.F., S.A.M. Modarres-Sanavy, M. Bannayan, M.A. Baghestani, H. Rahimian-Mashadi, and G. Hoogenboom. 2012. Dry bean competitiveness with redroot pigweed as affected by growth habit and nitrogen rate. Field Crops Research 135(1):38-45.
  • Saberali, S.F., S.A.M. Modarres-Sanavy, M. Bannayan, M. Aghaalikhani, G. Haghayegh, and G. Hoogenboom. 2016. Dry bean canopy characteristics and N assimilation as affected by weed pressure and nitrogen rate. The Journal of Agricultural Science 154(4):598-611.
  • Wallach, D., C. Hwang, M.J. Correll, J.W. Jones, K.J. Boote, G. Hoogenboom, S. Gezan, M. Bhaktae, and C.E. Vallejos. 2018. A dynamic model with QTL covariables for predicting flowering time of common bean (Phaseolus vulgaris) genotypes. European Journal of Agronomy 101(1):200-209.
  • Webber, H.A., C.A. Madramootoo, M. Bourgault, M.G. Horst, G. Stulina, and D.L. Smith. 2010. Adapting the CROPGRO model for saline soils: the case for a common bean crop. Irrigation Science 28: 317–329. https://doi.org/10.1007/s00271-009-0189-5
  • White, J.W., G. Hoogenboom, J.W. Jones, and K.J. Boote. 1995. Evaluation of the dry bean model BEANGRO V1.01 for crop production research in a tropical environment. Experimental Agriculture 31:241-254.
  • White, J.W., and G. Hoogenboom. 1996. Simulating effects of genes for physiological traits in a process-oriented crop model. Agronomy Journal 88:416-422.